Overview and Available Models
Successfully applied to
Efforts mainly funded through ressources at the LH2: Department of Hydromechanics and Modelling of Hydrosystems at the University of Stuttgart and third-party funding aquired at the LH2
We acknowledge funding that supported the development of DuMux in past and present:
Preimplemented models:
Describes the advective flux in porous media on the macro-scale
Single-phase flow \[ \mathbf{v} = - \frac{\mathbf{K}}{\mu} \left(\textbf{grad}\, p - \varrho \mathbf{g} \right) \]
Multi-phase flow (phase \(\alpha\)) \[ \mathbf{v}_\alpha = - \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K} \left(\textbf{grad}\, p_\alpha - \varrho_\alpha \mathbf{g} \right) \] where \(k_{r\alpha}(S_\alpha)\) is the relative permeability, a function of saturation \(S_\alpha\).
For non-creeping flow, Forchheimer’s law is available as an alternative.
Uses standard Darcy approach for the conservation of momentum by default
Mass continuity equation \[ \frac{\partial\left( \phi \varrho \right)}{\partial t} + \text{div} \left( \varrho \mathbf{v} \right) = q \]
Primary variable: \(p\)
Further details can be found in the corresponding documentation
Uses standard Darcy approach for the conservation of momentum by default
Transport of component \(\kappa \in \{\text{H2O}, \text{Air}, ...\}\) \[ \frac{\partial\left( \phi \varrho X^\kappa \right)}{\partial t} + \text{div} \left( \varrho X^\kappa \mathbf{v} - \varrho D^\kappa_\text{pm} \textbf{grad} X^\kappa \right) = q \]
Closure relation: \(\sum_\kappa X^\kappa = 1\)
Primary variables: \(p\) and \(X^\kappa\)
Further details can be found in the corresponding documentation
Transport equation for each component \(\kappa \in \{\text{H2O}, \text{Air}, ...\}\) \[ \frac{\partial \left( \varrho_f X^\kappa \phi \right)}{\partial t} + \text{div} \left( \varrho_f X^\kappa \mathbf{v} - \mathbf{D_\text{pm}^\kappa} \varrho_f \textbf{grad}\, X^\kappa \right) = q_\kappa \]
Mass balance solid phases \[ \frac{\partial \left(\varrho_\lambda \phi_\lambda \right)}{\partial t} = q_\lambda \]
Primary variables: \(p\), \(X^k\) and \(\phi_\lambda\)
Further details can be found in the corresponding documentation
Uses standard multi-phase Darcy approach for the conservation of momentum by default
Conservation of the phase mass of phase \(\alpha \in \{\text{w}, \text{n}\}\) \[ \frac{\partial \left(\phi \varrho_\alpha S_\alpha \right)}{\partial t} + \text{div} \left(\varrho_\alpha \mathbf{v}_\alpha \right) = q_\alpha \]
Constitutive relations: \(p_\text{c} := p_\text{n} - p_\text{w} = p_\text{c}(S_\text{w})\), \(k_{r\alpha}\) = \(k_{r\alpha}(S_\text{w})\)
Physical constraint (void space filled with fluid phases): \(S_\text{w} + S_\text{n} = 1\)
Primary variables: \(p_\text{w}\), \(S_\text{n}\) or \(p_\text{n}\), \(S_\text{w}\)
Further details can be found in the corresponding documentation
Transport equation for each component \(\kappa \in \{\text{H2O}, \text{Air}, ...\}\) in phase \(\alpha \in \{\text{w}, \text{n}\}\) \[ \begin{aligned} \frac{\partial \left( \sum_\alpha \varrho_\alpha X_\alpha^\kappa \phi S_\alpha \right)}{\partial t} &+ \sum_\alpha \text{div}\left( \varrho_\alpha X_\alpha^\kappa \mathbf{v}_\alpha - \mathbf{D_{\alpha, pm}^\kappa} \varrho_\alpha \textbf{grad}\, X^\kappa_\alpha \right) = \sum_\alpha q_\alpha^\kappa \end{aligned} \]
Constitutive relation: \(p_\text{c} := p_\text{n} - p_\text{w} = p_\text{c}(S_\text{w})\), \(k_{r\alpha}\) = \(k_{r\alpha}(S_\text{w})\)
Physical constraints: \(S_\text{w} + S_\text{n} = 1\) and \(\sum_\kappa X_\alpha^\kappa = 1\)
Primary variables: depending on the phase state
Further details can be found in the corresponding documentation
Transport equation for each component \(\kappa \in \{\text{H2O}, \text{Air}, ...\}\) \[ \begin{aligned} \frac{\partial \left( \sum_\alpha \varrho_\alpha X_\alpha^\kappa \phi S_\alpha \right)}{\partial t} &+ \sum_\alpha \text{div}\left( \varrho_\alpha X_\alpha^\kappa \mathbf{v}_\alpha - \mathbf{D_{\alpha, pm}^\kappa} \varrho_\alpha \textbf{grad}\, X^\kappa_\alpha \right)= \sum_\alpha q_\alpha^\kappa \end{aligned} \]
Mass balance solid phases \[ \frac{\partial \left(\varrho_\lambda \phi_\lambda \right)}{\partial t} = q_\lambda \quad \forall \lambda \in \Lambda \] for a set of solid phases \(\Lambda\) each with volume fraction \(\varrho_\lambda\)
Source term models dissolution/precipiation/phase transition fluid ↔︎ solid
Further details can be found in the corresponding documentation
Uses standard multi-phase Darcy approach for the conservation of momentum by default
Conservation of the phase mass of phase \(\alpha \in \{\text{w}, \text{g}, \text{n}\}\) \[ \frac{\partial \left( \phi \varrho_\alpha S_\alpha \right)}{\partial t} - \text{div} \left( \varrho_\alpha \mathbf{v}_\alpha \right) = q_\alpha \]
Physical constraint: \(S_\text{w} + S_\text{n} + S_g = 1\)
Primary variables: \(p_\text{g}\), \(S_\text{w}\), \(S_\text{n}\)
Further details can be found in the corresponding documentation
Transport equation for each component \(\kappa \in \{\text{H2O}, \text{Air}, \text{NAPL}\}\) in phase \(\alpha \in \{\text{w}, \text{g}, \text{n}\}\) \[ \begin{aligned} \frac{\partial \left( \phi \sum_\alpha \varrho_{\alpha,\text{mol}} x_\alpha^\kappa S_\alpha \right)}{\partial t}&+ \sum_\alpha \text{div} \left( \varrho_{\alpha,\text{mol}} x_\alpha^\kappa \mathbf{v}_\alpha - D_\text{pm}^\kappa \frac{1}{M_\kappa} \varrho_\alpha \textbf{grad} X^\kappa_{\alpha} \right) = q^\kappa \end{aligned} \]
Physical constraints: \(\sum_\alpha S_\alpha = 1\) and \(\sum_\kappa x^\kappa_\alpha = 1\)
Primary variables: depend on the locally present fluid phases
Further details can be found in the corresponding documentation
For other porous-medium flow models, we refer to the Doxygen documentation:
Local thermal equilibrium assumption
One energy conservation equation for the porous solid matrix and the fluids
\[ \begin{aligned}\frac{\partial \left( \phi \sum_\alpha \varrho_\alpha u_\alpha S_\alpha \right)}{\partial t} &+ \frac{\partial \left(\left(1 - \phi \right)\varrho_s c_s T \right)}{\partial t} + \sum_\alpha \text{div} \left( \varrho_\alpha h_\alpha \mathbf{v}_\alpha \right) - \text{div} \left(\lambda_\text{pm} \textbf{grad}\, T \right) = q^h \end{aligned} \]
Specific internal energy \(u_\alpha = h_\alpha - p_\alpha / \varrho_\alpha\)
Can be added to other models, additional primary variable temperature \(T\)
Further details can be found in the corresponding documentation
Momentum balance equation for a single-phase, isothermal RANS model
\[ \frac{\partial \left(\varrho \textbf{v} \right)}{\partial t} + \nabla \cdot \left(\varrho \textbf{v} \textbf{v}^{\text{T}} \right) = \nabla \cdot \left(\mu_\textrm{eff} \left(\nabla \textbf{v} + \nabla \textbf{v}^{\text{T}} \right) \right) - \nabla p + \varrho \textbf{g} - \textbf{f} \]
The effective viscosity is composed of the fluid and the eddy viscosity
\[ \mu_\textrm{eff} = \mu + \mu_\textrm{t} \]
Various turbulence models are implemented
More details can be found in the Doxygen documentation
For other models, we refer to the Doxygen documentation:
Vertex-centered finite volumes / control volume finite element method with piecewise linear polynomial functions (\(\mathrm{P}_1/\mathrm{Q}_1\))
Face-centered finite-volume scheme based on non-conforming finite-element spaces
Control-volume finite element scheme based on \(\mathrm{P}_1/\mathrm{Q}_1\) basis functions with enrichment by a bubble function