Line | Branch | Exec | Source |
---|---|---|---|
1 | // -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- | ||
2 | // vi: set et ts=4 sw=4 sts=4: | ||
3 | // | ||
4 | // SPDX-FileCopyrightInfo: Copyright © DuMux Project contributors, see AUTHORS.md in root folder | ||
5 | // SPDX-License-Identifier: GPL-3.0-or-later | ||
6 | // | ||
7 | /*! | ||
8 | * \file | ||
9 | * \ingroup FluidSystems | ||
10 | * \brief @copybrief Dumux::FluidSystems::OnePGas | ||
11 | */ | ||
12 | #ifndef DUMUX_GAS_PHASE_HH | ||
13 | #define DUMUX_GAS_PHASE_HH | ||
14 | |||
15 | #include <cassert> | ||
16 | #include <limits> | ||
17 | |||
18 | #include <dune/common/exceptions.hh> | ||
19 | |||
20 | #include <dumux/material/fluidsystems/base.hh> | ||
21 | #include <dumux/material/components/componenttraits.hh> | ||
22 | #include <dumux/io/name.hh> | ||
23 | |||
24 | namespace Dumux { | ||
25 | namespace FluidSystems { | ||
26 | |||
27 | /*! | ||
28 | * \ingroup FluidSystems | ||
29 | * \brief A gaseous phase consisting of a single component | ||
30 | */ | ||
31 | template <class Scalar, class ComponentT> | ||
32 | class OnePGas | ||
33 | : public Base<Scalar, OnePGas<Scalar, ComponentT> > | ||
34 | { | ||
35 | using ThisType = OnePGas<Scalar, ComponentT>; | ||
36 | |||
37 | static_assert(ComponentTraits<ComponentT>::hasGasState, "The component does not implement a gas state!"); | ||
38 | |||
39 | public: | ||
40 | using Component = ComponentT; | ||
41 | using ParameterCache = NullParameterCache; | ||
42 | |||
43 | static constexpr int numPhases = 1; //!< Number of phases in the fluid system | ||
44 | static constexpr int numComponents = 1; //!< Number of components in the fluid system | ||
45 | |||
46 | static constexpr int phase0Idx = 0; //!< index of the only phase | ||
47 | static constexpr int comp0Idx = 0; //!< index of the only component | ||
48 | |||
49 | /*! | ||
50 | * \brief Initialize the fluid system's static parameters generically | ||
51 | */ | ||
52 | static void init() | ||
53 | { } | ||
54 | |||
55 | /**************************************** | ||
56 | * Fluid phase related static parameters | ||
57 | ****************************************/ | ||
58 | /*! | ||
59 | * \brief Return the human readable name of a fluid phase | ||
60 | * | ||
61 | * \param phaseIdx The index of the fluid phase to consider | ||
62 | */ | ||
63 | ✗ | static std::string phaseName(int phaseIdx = 0) | |
64 | 638 | { return IOName::gaseousPhase(); } | |
65 | |||
66 | /*! | ||
67 | * \brief A human readable name for the component. | ||
68 | * | ||
69 | * \param compIdx The index of the component to consider | ||
70 | */ | ||
71 | ✗ | static std::string componentName(int compIdx = 0) | |
72 |
1/2✓ Branch 2 taken 1 times.
✗ Branch 3 not taken.
|
1 | { return Component::name(); } |
73 | |||
74 | /*! | ||
75 | * \brief A human readable name for the component. | ||
76 | */ | ||
77 | static std::string name() | ||
78 | 4 | { return Component::name(); } | |
79 | |||
80 | /*! | ||
81 | * \brief There is only one phase, so not mass transfer between phases can occur | ||
82 | */ | ||
83 | static constexpr bool isMiscible() | ||
84 | { return false; } | ||
85 | |||
86 | /*! | ||
87 | * \brief Returns whether the fluid is gaseous | ||
88 | */ | ||
89 | ✗ | static constexpr bool isGas(int phaseIdx = 0) | |
90 | ✗ | { return true; } | |
91 | |||
92 | /*! | ||
93 | * \brief Returns true if and only if a fluid phase is assumed to | ||
94 | * be an ideal mixture. | ||
95 | * | ||
96 | * We define an ideal mixture as a fluid phase where the fugacity | ||
97 | * coefficients of all components times the pressure of the phase | ||
98 | * are independent on the fluid composition. This assumption is true | ||
99 | * if only a single component is involved. If you are unsure what | ||
100 | * this function should return, it is safe to return false. The | ||
101 | * only damage done will be (slightly) increased computation times | ||
102 | * in some cases. | ||
103 | * | ||
104 | * \param phaseIdx The index of the fluid phase to consider | ||
105 | */ | ||
106 | ✗ | static constexpr bool isIdealMixture(int phaseIdx = 0) | |
107 | ✗ | { return true; } | |
108 | |||
109 | /*! | ||
110 | * \brief Returns true if the fluid is assumed to be compressible | ||
111 | */ | ||
112 | ✗ | static constexpr bool isCompressible(int phaseIdx = 0) | |
113 | ✗ | { return Component::gasIsCompressible(); } | |
114 | |||
115 | /*! | ||
116 | * \brief Returns true if the fluid is assumed to be an ideal gas | ||
117 | */ | ||
118 | ✗ | static constexpr bool isIdealGas(int phaseIdx = 0) | |
119 | ✗ | { return Component::gasIsIdeal(); } | |
120 | |||
121 | /*! | ||
122 | * \brief Returns true if and only if a fluid phase is assumed to | ||
123 | * have a constant viscosity. | ||
124 | * | ||
125 | * \param phaseIdx The index of the fluid phase to consider | ||
126 | */ | ||
127 | static constexpr bool viscosityIsConstant(int phaseIdx) | ||
128 | { return Component::gasViscosityIsConstant(); } | ||
129 | |||
130 | /*! | ||
131 | * \brief The mass in \f$\mathrm{[kg]}\f$ of one mole of the component. | ||
132 | */ | ||
133 | ✗ | static Scalar molarMass(int compIdx = 0) | |
134 | ✗ | { return Component::molarMass(); } | |
135 | |||
136 | /*! | ||
137 | * \brief Returns the critical temperature in \f$\mathrm{[K]}\f$ of the component | ||
138 | */ | ||
139 | static Scalar criticalTemperature(int compIdx = 0) | ||
140 | { return Component::criticalTemperature(); } | ||
141 | |||
142 | /*! | ||
143 | * \brief Returns the critical pressure in \f$\mathrm{[Pa]}\f$ of the component | ||
144 | */ | ||
145 | static Scalar criticalPressure(int compIdx = 0) | ||
146 | { return Component::criticalPressure(); } | ||
147 | |||
148 | /*! | ||
149 | * \brief Returns the temperature in \f$\mathrm{[K]}\f$ at the component's triple point. | ||
150 | */ | ||
151 | static Scalar tripleTemperature(int compIdx = 0) | ||
152 | { return Component::tripleTemperature(); } | ||
153 | |||
154 | /*! | ||
155 | * \brief Returns the pressure in \f$\mathrm{[Pa]}\f$ at the component's triple point. | ||
156 | */ | ||
157 | static Scalar triplePressure(int compIdx = 0) | ||
158 | { return Component::triplePressure(); } | ||
159 | |||
160 | /*! | ||
161 | * \brief The vapor pressure in \f$\mathrm{[Pa]}\f$ of the component at a given | ||
162 | * temperature. | ||
163 | * \param T temperature \f$\mathrm{[K]}\f$ | ||
164 | */ | ||
165 | static Scalar vaporPressure(Scalar T) | ||
166 | { return Component::vaporPressure(T); } | ||
167 | |||
168 | /*! | ||
169 | * \brief The density \f$\mathrm{[kg/m^3]}\f$ of the component at a given pressure and temperature. | ||
170 | * \param temperature The given temperature \f$\mathrm{[K]}\f$ | ||
171 | * \param pressure The given pressure \f$\mathrm{[Pa]}\f$ | ||
172 | */ | ||
173 | static Scalar density(Scalar temperature, Scalar pressure) | ||
174 | 19975576 | { return Component::gasDensity(temperature, pressure); } | |
175 | |||
176 | using Base<Scalar, ThisType>::density; | ||
177 | //! \copydoc Base<Scalar,ThisType>::density(const FluidState&,int) | ||
178 | template <class FluidState> | ||
179 | 1 | static Scalar density(const FluidState &fluidState, | |
180 | const int phaseIdx) | ||
181 | { | ||
182 | return density(fluidState.temperature(phaseIdx), | ||
183 | 31 | fluidState.pressure(phaseIdx)); | |
184 | } | ||
185 | |||
186 | /*! | ||
187 | * \brief The molar density \f$\rho_{mol,\alpha}\f$ | ||
188 | * of a fluid phase \f$\alpha\f$ in \f$\mathrm{[mol/m^3]}\f$ | ||
189 | * | ||
190 | * The molar density is defined by the | ||
191 | * mass density \f$\rho_\alpha\f$ and the component molar mass \f$M_\alpha\f$: | ||
192 | * | ||
193 | * \f[\rho_{mol,\alpha} = \frac{\rho_\alpha}{M_\alpha} \;.\f] | ||
194 | * \param temperature The temperature at which to evaluate the molar density | ||
195 | * \param pressure The pressure at which to evaluate the molar density | ||
196 | */ | ||
197 | static Scalar molarDensity(Scalar temperature, Scalar pressure) | ||
198 | 8 | { return Component::gasMolarDensity(temperature, pressure); } | |
199 | |||
200 | using Base<Scalar, ThisType>::molarDensity; | ||
201 | //! \copydoc Base<Scalar,ThisType>::molarDensity(const FluidState&,int) | ||
202 | template <class FluidState> | ||
203 | 1 | static Scalar molarDensity(const FluidState &fluidState, | |
204 | const int phaseIdx) | ||
205 | { | ||
206 | return molarDensity(fluidState.temperature(phaseIdx), | ||
207 | 1 | fluidState.pressure(phaseIdx)); | |
208 | } | ||
209 | |||
210 | /*! | ||
211 | * \brief The pressure \f$\mathrm{[Pa]}\f$ of the component at a given density and temperature. | ||
212 | * \param temperature The given temperature \f$\mathrm{[K]}\f$ | ||
213 | * \param density The given density \f$\mathrm{[kg/m^3]}\f$ | ||
214 | */ | ||
215 | static Scalar pressure(Scalar temperature, Scalar density) | ||
216 | { return Component::gasPressure(temperature, density); } | ||
217 | |||
218 | /*! | ||
219 | * \brief Specific enthalpy \f$\mathrm{[J/kg]}\f$ of the pure component as a gas. | ||
220 | * \param temperature The given temperature \f$\mathrm{[K]}\f$ | ||
221 | * \param pressure The given pressure \f$\mathrm{[Pa]}\f$ | ||
222 | */ | ||
223 | ✗ | static const Scalar enthalpy(Scalar temperature, Scalar pressure) | |
224 | 4 | { return Component::gasEnthalpy(temperature, pressure); } | |
225 | |||
226 | using Base<Scalar, ThisType>::enthalpy; | ||
227 | //! \copydoc Base<Scalar,ThisType>::enthalpy(const FluidState&,int) | ||
228 | template <class FluidState> | ||
229 | 1 | static Scalar enthalpy(const FluidState &fluidState, | |
230 | const int phaseIdx) | ||
231 | { | ||
232 | return enthalpy(fluidState.temperature(phaseIdx), | ||
233 | 1 | fluidState.pressure(phaseIdx)); | |
234 | } | ||
235 | |||
236 | /*! | ||
237 | * \brief Specific internal energy \f$\mathrm{[J/kg]}\f$ of the pure component as a gas. | ||
238 | * \param temperature The given temperature \f$\mathrm{[K]}\f$ | ||
239 | * \param pressure The given pressure \f$\mathrm{[Pa]}\f$ | ||
240 | */ | ||
241 | static const Scalar internalEnergy(Scalar temperature, Scalar pressure) | ||
242 | { return Component::gasInternalEnergy(temperature, pressure); } | ||
243 | |||
244 | /*! | ||
245 | * \brief The dynamic viscosity \f$\mathrm{[Pa s]}\f$ of the pure component at a given pressure and temperature. | ||
246 | * \param temperature The given temperature \f$\mathrm{[K]}\f$ | ||
247 | * \param pressure The given pressure \f$\mathrm{[Pa]}\f$ | ||
248 | */ | ||
249 | static Scalar viscosity(Scalar temperature, Scalar pressure) | ||
250 | 5004857 | { return Component::gasViscosity(temperature, pressure); } | |
251 | |||
252 | using Base<Scalar, ThisType>::viscosity; | ||
253 | //! \copydoc Base<Scalar,ThisType>::viscosity(const FluidState&,int) | ||
254 | template <class FluidState> | ||
255 | 1 | static Scalar viscosity(const FluidState &fluidState, | |
256 | const int phaseIdx) | ||
257 | { | ||
258 | return viscosity(fluidState.temperature(phaseIdx), | ||
259 |
1/2✓ Branch 2 taken 15 times.
✗ Branch 3 not taken.
|
16 | fluidState.pressure(phaseIdx)); |
260 | } | ||
261 | |||
262 | using Base<Scalar, ThisType>::fugacityCoefficient; | ||
263 | //! \copydoc Base<Scalar,ThisType>::fugacityCoefficient(const FluidState&,int,int) | ||
264 | template <class FluidState> | ||
265 | ✗ | static Scalar fugacityCoefficient(const FluidState &fluidState, | |
266 | int phaseIdx, | ||
267 | int compIdx) | ||
268 | { | ||
269 | ✗ | assert(0 <= phaseIdx && phaseIdx < numPhases); | |
270 | ✗ | assert(0 <= compIdx && compIdx < numComponents); | |
271 | |||
272 | if (phaseIdx == compIdx) | ||
273 | // We could calculate the real fugacity coefficient of | ||
274 | // the component in the fluid. Probably that's not worth | ||
275 | // the effort, since the fugacity coefficient of the other | ||
276 | // component is infinite anyway... | ||
277 | ✗ | return 1.0; | |
278 | return std::numeric_limits<Scalar>::infinity(); | ||
279 | } | ||
280 | |||
281 | using Base<Scalar, ThisType>::diffusionCoefficient; | ||
282 | //! \copydoc Base<Scalar,ThisType>::diffusionCoefficient(const FluidState&,int,int) | ||
283 | template <class FluidState> | ||
284 | 1 | static Scalar diffusionCoefficient(const FluidState &fluidState, | |
285 | int phaseIdx, | ||
286 | int compIdx) | ||
287 | { | ||
288 |
7/16✓ Branch 2 taken 1 times.
✗ Branch 3 not taken.
✓ Branch 11 taken 1 times.
✗ Branch 12 not taken.
✓ Branch 15 taken 1 times.
✗ Branch 16 not taken.
✓ Branch 18 taken 1 times.
✗ Branch 19 not taken.
✓ Branch 21 taken 1 times.
✗ Branch 22 not taken.
✓ Branch 23 taken 1 times.
✗ Branch 24 not taken.
✗ Branch 26 not taken.
✓ Branch 27 taken 1 times.
✗ Branch 29 not taken.
✗ Branch 30 not taken.
|
11 | DUNE_THROW(Dune::InvalidStateException, "Not applicable: Diffusion coefficients"); |
289 | } | ||
290 | |||
291 | using Base<Scalar, ThisType>::binaryDiffusionCoefficient; | ||
292 | //! \copydoc Base<Scalar,ThisType>::binaryDiffusionCoefficient(const FluidState&,int,int,int) | ||
293 | template <class FluidState> | ||
294 | 1 | static Scalar binaryDiffusionCoefficient(const FluidState &fluidState, | |
295 | int phaseIdx, | ||
296 | int compIIdx, | ||
297 | int compJIdx) | ||
298 | |||
299 | { | ||
300 |
7/16✓ Branch 2 taken 1 times.
✗ Branch 3 not taken.
✓ Branch 11 taken 1 times.
✗ Branch 12 not taken.
✓ Branch 15 taken 1 times.
✗ Branch 16 not taken.
✓ Branch 18 taken 1 times.
✗ Branch 19 not taken.
✓ Branch 21 taken 1 times.
✗ Branch 22 not taken.
✓ Branch 23 taken 1 times.
✗ Branch 24 not taken.
✗ Branch 26 not taken.
✓ Branch 27 taken 1 times.
✗ Branch 29 not taken.
✗ Branch 30 not taken.
|
11 | DUNE_THROW(Dune::InvalidStateException, "Not applicable: Binary diffusion coefficients"); |
301 | } | ||
302 | |||
303 | /*! | ||
304 | * \brief Thermal conductivity of the fluid \f$\mathrm{[W/(m K)]}\f$. | ||
305 | * \param temperature The given temperature \f$\mathrm{[K]}\f$ | ||
306 | * \param pressure The given pressure \f$\mathrm{[Pa]}\f$ | ||
307 | */ | ||
308 | ✗ | static Scalar thermalConductivity(Scalar temperature, Scalar pressure) | |
309 | 68786564 | { return Component::gasThermalConductivity(temperature, pressure); } | |
310 | |||
311 | using Base<Scalar, ThisType>::thermalConductivity; | ||
312 | //! \copydoc Base<Scalar,ThisType>::thermalConductivity(const FluidState&,int) | ||
313 | template <class FluidState> | ||
314 | 1 | static Scalar thermalConductivity(const FluidState &fluidState, | |
315 | const int phaseIdx) | ||
316 | { | ||
317 | return thermalConductivity(fluidState.temperature(phaseIdx), | ||
318 | 68623261 | fluidState.pressure(phaseIdx)); | |
319 | } | ||
320 | |||
321 | /*! | ||
322 | * \brief Specific isobaric heat capacity of the fluid \f$\mathrm{[J/(kg K)]}\f$. | ||
323 | * \param temperature The given temperature \f$\mathrm{[K]}\f$ | ||
324 | * \param pressure The given pressure \f$\mathrm{[Pa]}\f$ | ||
325 | */ | ||
326 | ✗ | static Scalar heatCapacity(Scalar temperature, Scalar pressure) | |
327 | 24863936 | { return Component::gasHeatCapacity(temperature, pressure); } | |
328 | |||
329 | using Base<Scalar, ThisType>::heatCapacity; | ||
330 | //! \copydoc Base<Scalar,ThisType>::heatCapacity(const FluidState&,int) | ||
331 | template <class FluidState> | ||
332 | 1 | static Scalar heatCapacity(const FluidState &fluidState, | |
333 | const int phaseIdx) | ||
334 | { | ||
335 | return heatCapacity(fluidState.temperature(phaseIdx), | ||
336 | 24863933 | fluidState.pressure(phaseIdx)); | |
337 | } | ||
338 | }; | ||
339 | |||
340 | } // namespace FluidSystems | ||
341 | } // namespace | ||
342 | |||
343 | #endif | ||
344 |