Line | Branch | Exec | Source |
---|---|---|---|
1 | // -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- | ||
2 | // vi: set et ts=4 sw=4 sts=4: | ||
3 | // | ||
4 | // SPDX-FileCopyrightText: Copyright © DuMux Project contributors, see AUTHORS.md in root folder | ||
5 | // SPDX-License-Identifier: GPL-3.0-or-later | ||
6 | // | ||
7 | /*! | ||
8 | * \file | ||
9 | * \ingroup FluidSystems | ||
10 | * \brief @copybrief Dumux::FluidSystems::OnePLiquid | ||
11 | */ | ||
12 | #ifndef DUMUX_FLUIDSYSTEMS_LIQUID_PHASE_HH | ||
13 | #define DUMUX_FLUIDSYSTEMS_LIQUID_PHASE_HH | ||
14 | |||
15 | #include <cassert> | ||
16 | #include <limits> | ||
17 | |||
18 | #include <dune/common/exceptions.hh> | ||
19 | |||
20 | #include <dumux/material/fluidsystems/base.hh> | ||
21 | #include <dumux/material/components/componenttraits.hh> | ||
22 | #include <dumux/io/name.hh> | ||
23 | |||
24 | namespace Dumux::FluidSystems { | ||
25 | |||
26 | /*! | ||
27 | * \ingroup FluidSystems | ||
28 | * \brief A liquid phase consisting of a single component | ||
29 | */ | ||
30 | template <class Scalar, class ComponentT> | ||
31 | class OnePLiquid | ||
32 | : public Base<Scalar, OnePLiquid<Scalar, ComponentT> > | ||
33 | { | ||
34 | using ThisType = OnePLiquid<Scalar, ComponentT>; | ||
35 | |||
36 | static_assert(ComponentTraits<ComponentT>::hasLiquidState, "The component does not implement a liquid state!"); | ||
37 | |||
38 | public: | ||
39 | using Component = ComponentT; | ||
40 | using ParameterCache = NullParameterCache; | ||
41 | |||
42 | static constexpr int numPhases = 1; //!< Number of phases in the fluid system | ||
43 | static constexpr int numComponents = 1; //!< Number of components in the fluid system | ||
44 | |||
45 | static constexpr int phase0Idx = 0; //!< index of the only phase | ||
46 | static constexpr int comp0Idx = 0; //!< index of the only component | ||
47 | |||
48 | /*! | ||
49 | * \brief Initialize the fluid system's static parameters generically | ||
50 | */ | ||
51 |
1/2✓ Branch 1 taken 6 times.
✗ Branch 2 not taken.
|
6 | static void init() |
52 | { } | ||
53 | |||
54 | /**************************************** | ||
55 | * Fluid phase related static parameters | ||
56 | ****************************************/ | ||
57 | /*! | ||
58 | * \brief Return the human readable name of a fluid phase | ||
59 | * | ||
60 | * \param phaseIdx The index of the fluid phase to consider | ||
61 | */ | ||
62 | 392 | static std::string phaseName(int phaseIdx = 0) | |
63 | { return IOName::liquidPhase(); } | ||
64 | |||
65 | /*! | ||
66 | * \brief A human readable name for the component. | ||
67 | * | ||
68 | * \param compIdx The index of the component to consider | ||
69 | */ | ||
70 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | static std::string componentName(int compIdx = 0) |
71 | { return Component::name(); } | ||
72 | |||
73 | /*! | ||
74 | * \brief A human readable name for the component. | ||
75 | */ | ||
76 | 7 | static std::string name() | |
77 | 7 | { return Component::name(); } | |
78 | |||
79 | /*! | ||
80 | * \brief There is only one phase, so not mass transfer between phases can occur | ||
81 | */ | ||
82 | static constexpr bool isMiscible() | ||
83 | { return false; } | ||
84 | |||
85 | /*! | ||
86 | * \brief Returns whether the fluid is a liquid | ||
87 | */ | ||
88 | static constexpr bool isGas(int phaseIdx = 0) | ||
89 | { return false; } | ||
90 | |||
91 | /*! | ||
92 | * \brief Returns true if and only if a fluid phase is assumed to | ||
93 | * be an ideal mixture. | ||
94 | * | ||
95 | * We define an ideal mixture as a fluid phase where the fugacity | ||
96 | * coefficients of all components times the pressure of the phase | ||
97 | * are independent on the fluid composition. This assumption is true | ||
98 | * if only a single component is involved. If you are unsure what | ||
99 | * this function should return, it is safe to return false. The | ||
100 | * only damage done will be (slightly) increased computation times | ||
101 | * in some cases. | ||
102 | * | ||
103 | * \param phaseIdx The index of the fluid phase to consider | ||
104 | */ | ||
105 | static constexpr bool isIdealMixture(int phaseIdx = 0) | ||
106 | { return true; } | ||
107 | |||
108 | /*! | ||
109 | * \brief Returns true if the fluid is assumed to be compressible | ||
110 | */ | ||
111 | static constexpr bool isCompressible(int phaseIdx = 0) | ||
112 | { return Component::liquidIsCompressible(); } | ||
113 | |||
114 | /*! | ||
115 | * \brief Returns true if the fluid viscosity is constant | ||
116 | */ | ||
117 | static constexpr bool viscosityIsConstant(int phaseIdx = 0) | ||
118 | { return Component::liquidViscosityIsConstant(); } | ||
119 | |||
120 | /*! | ||
121 | * \brief Returns true if the fluid is assumed to be an ideal gas | ||
122 | */ | ||
123 | static constexpr bool isIdealGas(int phaseIdx = 0) | ||
124 | { return false; /* we're a liquid! */ } | ||
125 | |||
126 | /*! | ||
127 | * \brief The mass in \f$\mathrm{[kg]}\f$ of one mole of the component. | ||
128 | */ | ||
129 | static Scalar molarMass(int compIdx = 0) | ||
130 | { return Component::molarMass(); } | ||
131 | |||
132 | /*! | ||
133 | * \brief Returns the critical temperature \f$\mathrm{[K]}\f$ of the component | ||
134 | */ | ||
135 | static Scalar criticalTemperature(int compIdx = 0) | ||
136 | { return Component::criticalTemperature(); } | ||
137 | |||
138 | /*! | ||
139 | * \brief Returns the critical pressure \f$\mathrm{[Pa]}\f$ of the component | ||
140 | */ | ||
141 | static Scalar criticalPressure(int compIdx = 0) | ||
142 | { return Component::criticalPressure(); } | ||
143 | |||
144 | /*! | ||
145 | * \brief Returns the temperature \f$\mathrm{[K]}\f$ at the component's triple point. | ||
146 | */ | ||
147 | static Scalar tripleTemperature(int compIdx = 0) | ||
148 | { return Component::tripleTemperature(); } | ||
149 | |||
150 | /*! | ||
151 | * \brief Returns the pressure \f$\mathrm{[Pa]}\f$ at the component's triple point. | ||
152 | */ | ||
153 | static Scalar triplePressure(int compIdx = 0) | ||
154 | { return Component::triplePressure(); } | ||
155 | |||
156 | /*! | ||
157 | * \brief The vapor pressure in \f$\mathrm{[Pa]}\f$ of the component at a given | ||
158 | * temperature. | ||
159 | */ | ||
160 | static Scalar vaporPressure(Scalar T) | ||
161 | { return Component::vaporPressure(T); } | ||
162 | |||
163 | /*! | ||
164 | * \brief The density \f$\mathrm{[kg/m^3]}\f$ of the component at a given pressure and temperature. | ||
165 | */ | ||
166 | 58206612 | static Scalar density(Scalar temperature, Scalar pressure) | |
167 | 58457871 | { return Component::liquidDensity(temperature, pressure); } | |
168 | |||
169 | using Base<Scalar, ThisType>::density; | ||
170 | //! \copydoc Base<Scalar,ThisType>::density(const FluidState&,int) | ||
171 | template <class FluidState> | ||
172 | 54453843 | static Scalar density(const FluidState &fluidState, | |
173 | const int phaseIdx) | ||
174 | { | ||
175 |
2/4✓ Branch 1 taken 7 times.
✗ Branch 2 not taken.
✓ Branch 5 taken 7 times.
✗ Branch 6 not taken.
|
54452199 | return density(fluidState.temperature(phaseIdx), |
176 | 1 | fluidState.pressure(phaseIdx)); | |
177 | } | ||
178 | |||
179 | using Base<Scalar, ThisType>::molarDensity; | ||
180 | //! \copydoc Base<Scalar,ThisType>::molarDensity(const FluidState&,int) | ||
181 | template <class FluidState> | ||
182 | 1 | static Scalar molarDensity(const FluidState &fluidState, const int phaseIdx) | |
183 | { | ||
184 | 1 | return molarDensity(fluidState.temperature(phaseIdx), | |
185 | 1 | fluidState.pressure(phaseIdx)); | |
186 | } | ||
187 | |||
188 | /*! | ||
189 | * \brief The density \f$\mathrm{[kg/m^3]}\f$ of the component at a given pressure and temperature. | ||
190 | * \param temperature The temperature at which to evaluate the molar density | ||
191 | * \param pressure The pressure at which to evaluate the molar density | ||
192 | */ | ||
193 | 8 | static Scalar molarDensity(Scalar temperature, Scalar pressure) | |
194 | 7 | { return Component::liquidMolarDensity(temperature, pressure); } | |
195 | |||
196 | /*! | ||
197 | * \brief The pressure \f$\mathrm{[Pa]}\f$ of the component at a given density and temperature. | ||
198 | * \param temperature The temperature at which to evaluate the pressure | ||
199 | * \param density The density at which to evaluate the pressure | ||
200 | */ | ||
201 | static Scalar pressure(Scalar temperature, Scalar density) | ||
202 | { return Component::liquidPressure(temperature, density); } | ||
203 | |||
204 | /*! | ||
205 | * \brief Specific enthalpy \f$\mathrm{[J/kg]}\f$ the pure component as a liquid. | ||
206 | * \param temperature The temperature at which to evaluate the enthalpy | ||
207 | * \param pressure The pressure at which to evaluate the enthalpy | ||
208 | */ | ||
209 | 10006064 | static const Scalar enthalpy(Scalar temperature, Scalar pressure) | |
210 |
2/4✓ Branch 1 taken 38840 times.
✗ Branch 2 not taken.
✓ Branch 5 taken 57 times.
✗ Branch 6 not taken.
|
10006063 | { return Component::liquidEnthalpy(temperature, pressure); } |
211 | |||
212 | using Base<Scalar, ThisType>::enthalpy; | ||
213 | //! \copydoc Base<Scalar,ThisType>::enthalpy(const FluidState&,int) | ||
214 | template <class FluidState> | ||
215 | 9967160 | static Scalar enthalpy(const FluidState &fluidState, | |
216 | const int phaseIdx) | ||
217 | { | ||
218 |
2/4✓ Branch 4 taken 3800 times.
✗ Branch 5 not taken.
✓ Branch 7 taken 3800 times.
✗ Branch 8 not taken.
|
9967160 | return enthalpy(fluidState.temperature(phaseIdx), |
219 | 1 | fluidState.pressure(phaseIdx)); | |
220 | } | ||
221 | |||
222 | /*! | ||
223 | * \brief Specific internal energy \f$\mathrm{[J/kg]}\f$ the pure component as a liquid. | ||
224 | * \param temperature The temperature at which to evaluate the internal energy | ||
225 | * \param pressure The pressure at which to evaluate the internal energy | ||
226 | */ | ||
227 | static const Scalar internalEnergy(Scalar temperature, Scalar pressure) | ||
228 | { return Component::liquidInternalEnergy(temperature, pressure); } | ||
229 | |||
230 | /*! | ||
231 | * \brief The dynamic liquid viscosity \f$\mathrm{[N/m^3*s]}\f$ of the pure component. | ||
232 | * \param temperature The temperature at which to evaluate the viscosity | ||
233 | * \param pressure The pressure at which to evaluate the viscosity | ||
234 | */ | ||
235 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
58457864 | static Scalar viscosity(Scalar temperature, Scalar pressure) |
236 | 58457857 | { return Component::liquidViscosity(temperature, pressure); } | |
237 | |||
238 | using Base<Scalar, ThisType>::viscosity; | ||
239 | //! \copydoc Base<Scalar,ThisType>::viscosity(const FluidState&,int) | ||
240 | template <class FluidState> | ||
241 | 1 | static Scalar viscosity(const FluidState &fluidState, | |
242 | const int phaseIdx) | ||
243 | { | ||
244 | 54452185 | return viscosity(fluidState.temperature(phaseIdx), | |
245 | 1 | fluidState.pressure(phaseIdx)); | |
246 | } | ||
247 | |||
248 | using Base<Scalar, ThisType>::fugacityCoefficient; | ||
249 | //! \copydoc Base<Scalar,ThisType>::fugacityCoefficient(const FluidState&,int,int) | ||
250 | template <class FluidState> | ||
251 | 1 | static Scalar fugacityCoefficient(const FluidState &fluidState, | |
252 | int phaseIdx, | ||
253 | int compIdx) | ||
254 | { | ||
255 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
|
1 | assert(0 <= phaseIdx && phaseIdx < numPhases); |
256 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
|
1 | assert(0 <= compIdx && compIdx < numComponents); |
257 | |||
258 | if (phaseIdx == compIdx) | ||
259 | // We could calculate the real fugacity coefficient of | ||
260 | // the component in the fluid. Probably that's not worth | ||
261 | // the effort, since the fugacity coefficient of the other | ||
262 | // component is infinite anyway... | ||
263 | return 1.0; | ||
264 | return std::numeric_limits<Scalar>::infinity(); | ||
265 | } | ||
266 | |||
267 | using Base<Scalar, ThisType>::diffusionCoefficient; | ||
268 | //! \copydoc Base<Scalar,ThisType>::diffusionCoefficient(const FluidState&,int,int) | ||
269 | template <class FluidState> | ||
270 | 1 | static Scalar diffusionCoefficient(const FluidState &fluidState, | |
271 | int phaseIdx, | ||
272 | int compIdx) | ||
273 | { | ||
274 |
10/20✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 1 times.
✗ Branch 5 not taken.
✓ Branch 7 taken 1 times.
✗ Branch 8 not taken.
✓ Branch 10 taken 1 times.
✗ Branch 11 not taken.
✓ Branch 13 taken 1 times.
✗ Branch 14 not taken.
✓ Branch 16 taken 1 times.
✗ Branch 17 not taken.
✓ Branch 19 taken 1 times.
✗ Branch 20 not taken.
✓ Branch 22 taken 1 times.
✗ Branch 23 not taken.
✓ Branch 25 taken 1 times.
✗ Branch 26 not taken.
✓ Branch 28 taken 1 times.
✗ Branch 29 not taken.
|
4 | DUNE_THROW(Dune::InvalidStateException, "Not applicable: Diffusion coefficients"); |
275 | } | ||
276 | |||
277 | using Base<Scalar, ThisType>::binaryDiffusionCoefficient; | ||
278 | //! \copydoc Base<Scalar,ThisType>::binaryDiffusionCoefficient(const FluidState&,int,int,int) | ||
279 | template <class FluidState> | ||
280 | 1 | static Scalar binaryDiffusionCoefficient(const FluidState &fluidState, | |
281 | int phaseIdx, | ||
282 | int compIIdx, | ||
283 | int compJIdx) | ||
284 | { | ||
285 |
10/20✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 1 times.
✗ Branch 5 not taken.
✓ Branch 7 taken 1 times.
✗ Branch 8 not taken.
✓ Branch 10 taken 1 times.
✗ Branch 11 not taken.
✓ Branch 13 taken 1 times.
✗ Branch 14 not taken.
✓ Branch 16 taken 1 times.
✗ Branch 17 not taken.
✓ Branch 19 taken 1 times.
✗ Branch 20 not taken.
✓ Branch 22 taken 1 times.
✗ Branch 23 not taken.
✓ Branch 25 taken 1 times.
✗ Branch 26 not taken.
✓ Branch 28 taken 1 times.
✗ Branch 29 not taken.
|
4 | DUNE_THROW(Dune::InvalidStateException, "Not applicable: Binary diffusion coefficients"); |
286 | } | ||
287 | |||
288 | /*! | ||
289 | * \brief Thermal conductivity of the fluid \f$\mathrm{[W/(m K)]}\f$. | ||
290 | * \param temperature The temperature at which to evaluate the thermal conductivity | ||
291 | * \param pressure The pressure at which to evaluate the thermal conductivity | ||
292 | */ | ||
293 | 7675253 | static Scalar thermalConductivity(Scalar temperature, Scalar pressure) | |
294 | 7651431 | { return Component::liquidThermalConductivity(temperature, pressure); } | |
295 | |||
296 | using Base<Scalar, ThisType>::thermalConductivity; | ||
297 | //! \copydoc Base<Scalar,ThisType>::thermalConductivity(const FluidState&,int) | ||
298 | template <class FluidState> | ||
299 | 7651425 | static Scalar thermalConductivity(const FluidState &fluidState, | |
300 | const int phaseIdx) | ||
301 | { | ||
302 |
1/2✓ Branch 3 taken 660 times.
✗ Branch 4 not taken.
|
7651425 | return thermalConductivity(fluidState.temperature(phaseIdx), |
303 | 1 | fluidState.pressure(phaseIdx)); | |
304 | } | ||
305 | |||
306 | /*! | ||
307 | * \brief Specific isobaric heat capacity of the fluid \f$\mathrm{[J/(kg K)]}\f$. | ||
308 | * \param temperature The temperature at which to evaluate the heat capacity | ||
309 | * \param pressure The pressure at which to evaluate the heat capacity | ||
310 | */ | ||
311 | 8 | static Scalar heatCapacity(Scalar temperature, Scalar pressure) | |
312 | 7 | { return Component::liquidHeatCapacity(temperature, pressure); } | |
313 | |||
314 | using Base<Scalar, ThisType>::heatCapacity; | ||
315 | //! \copydoc Base<Scalar,ThisType>::heatCapacity(const FluidState&,int) | ||
316 | template <class FluidState> | ||
317 | 1 | static Scalar heatCapacity(const FluidState &fluidState, | |
318 | const int phaseIdx) | ||
319 | { | ||
320 | 1 | return heatCapacity(fluidState.temperature(phaseIdx), | |
321 | 1 | fluidState.pressure(phaseIdx)); | |
322 | } | ||
323 | }; | ||
324 | |||
325 | } // namespace Dumux::FluidSystems | ||
326 | |||
327 | #endif | ||
328 |