Line |
Branch |
Exec |
Source |
1 |
|
|
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- |
2 |
|
|
// vi: set et ts=4 sw=4 sts=4: |
3 |
|
|
// |
4 |
|
|
// SPDX-FileCopyrightInfo: Copyright © DuMux Project contributors, see AUTHORS.md in root folder |
5 |
|
|
// SPDX-License-Identifier: GPL-3.0-or-later |
6 |
|
|
// |
7 |
|
|
/*! |
8 |
|
|
* \file |
9 |
|
|
* \ingroup MPNCTests |
10 |
|
|
* \brief @copybrief Dumux::FluidSystems::CombustionFluidsystem |
11 |
|
|
*/ |
12 |
|
|
#ifndef DUMUX_PURE_WATER_FLUID_SYSTEM_HH |
13 |
|
|
#define DUMUX_PURE_WATER_FLUID_SYSTEM_HH |
14 |
|
|
|
15 |
|
|
#include <cassert> |
16 |
|
|
|
17 |
|
|
#include <dumux/material/idealgas.hh> |
18 |
|
|
|
19 |
|
|
#include <dumux/material/fluidsystems/base.hh> |
20 |
|
|
#include <dumux/material/components/n2.hh> |
21 |
|
|
#include <dumux/material/components/simpleh2o.hh> |
22 |
|
|
#include <dumux/material/binarycoefficients/h2o_n2.hh> |
23 |
|
|
|
24 |
|
|
#include <dumux/common/exceptions.hh> |
25 |
|
|
|
26 |
|
|
namespace Dumux { |
27 |
|
|
namespace FluidSystems { |
28 |
|
|
|
29 |
|
|
/*! |
30 |
|
|
* \ingroup MPNCTests |
31 |
|
|
* |
32 |
|
|
* \brief A two-phase fluid system with water as sole component. |
33 |
|
|
* |
34 |
|
|
* Values are taken from Shi and Wang, 2011 \cite Shi2011. |
35 |
|
|
*/ |
36 |
|
|
template <class Scalar> |
37 |
|
|
class CombustionFluidsystem |
38 |
|
|
: public Base<Scalar, CombustionFluidsystem<Scalar> > |
39 |
|
|
{ |
40 |
|
|
using ThisType = CombustionFluidsystem<Scalar>; |
41 |
|
|
using Base = Dumux::FluidSystems::Base<Scalar, ThisType>; |
42 |
|
|
|
43 |
|
|
// convenience using declarations |
44 |
|
|
using IdealGas = Dumux::IdealGas<Scalar>; |
45 |
|
|
using SimpleH2O = Dumux::Components::SimpleH2O<Scalar>; |
46 |
|
|
using SimpleN2 = Dumux::Components::N2<Scalar>; |
47 |
|
|
|
48 |
|
|
public: |
49 |
|
|
/**************************************** |
50 |
|
|
* Fluid phase related static parameters |
51 |
|
|
****************************************/ |
52 |
|
|
|
53 |
|
|
//! Number of phases in the fluid system |
54 |
|
|
static constexpr int numPhases = 2; |
55 |
|
|
|
56 |
|
|
static constexpr int wPhaseIdx = 0; // index of the wetting phase |
57 |
|
|
static constexpr int nPhaseIdx = 1; // index of the nonwetting phase |
58 |
|
|
static constexpr int phase0Idx = 0; // index of the wetting phase |
59 |
|
|
static constexpr int phase1Idx = 1; // index of the nonwetting phase |
60 |
|
|
|
61 |
|
|
// export component indices to indicate the main component |
62 |
|
|
// of the corresponding phase at atmospheric pressure 1 bar |
63 |
|
|
// and room temperature 20°C: |
64 |
|
|
static constexpr int wCompIdx = wPhaseIdx; |
65 |
|
|
static constexpr int nCompIdx = nPhaseIdx; |
66 |
|
|
static constexpr int comp0Idx = 0; // index of the wetting phase |
67 |
|
|
static constexpr int comp1Idx = 1; // index of the nonwetting phase |
68 |
|
|
|
69 |
|
|
/*! |
70 |
|
|
* \brief Returns the human readable name of a fluid phase |
71 |
|
|
* |
72 |
|
|
* \param phaseIdx The index of the fluid phase to consider |
73 |
|
|
*/ |
74 |
|
✗ |
static std::string phaseName(int phaseIdx) |
75 |
|
|
{ |
76 |
|
✗ |
assert(0 <= phaseIdx && phaseIdx < numPhases); |
77 |
|
✗ |
switch (phaseIdx) |
78 |
|
|
{ |
79 |
|
✗ |
case wPhaseIdx: return "liq"; |
80 |
|
✗ |
case nPhaseIdx: return "gas"; |
81 |
|
|
} |
82 |
|
✗ |
DUNE_THROW(Dune::InvalidStateException, "Invalid phase index " << phaseIdx); |
83 |
|
|
} |
84 |
|
|
|
85 |
|
|
/*! |
86 |
|
|
* \brief Returns whether a phase is gaseous |
87 |
|
|
* |
88 |
|
|
* \param phaseIdx The index of the fluid phase to consider |
89 |
|
|
*/ |
90 |
|
|
static constexpr bool isGas(int phaseIdx) |
91 |
|
|
{ |
92 |
|
|
assert(0 <= phaseIdx && phaseIdx < numPhases); |
93 |
|
|
return phaseIdx == nPhaseIdx; |
94 |
|
|
} |
95 |
|
|
|
96 |
|
|
/*! |
97 |
|
|
* \brief Returns true if and only if a fluid phase is assumed to |
98 |
|
|
* be an ideal mixture. |
99 |
|
|
* |
100 |
|
|
* We define an ideal mixture as a fluid phase where the fugacity |
101 |
|
|
* coefficients of all components times the pressure of the phase |
102 |
|
|
* are independent on the fluid composition. This assumption is true |
103 |
|
|
* if Henry's law and Raoult's law apply. If you are unsure what |
104 |
|
|
* this function should return, it is safe to return false. The |
105 |
|
|
* only damage done will be (slightly) increased computation times |
106 |
|
|
* in some cases. |
107 |
|
|
* |
108 |
|
|
* \param phaseIdx The index of the fluid phase to consider |
109 |
|
|
*/ |
110 |
|
|
static bool isIdealMixture(int phaseIdx) |
111 |
|
|
{ |
112 |
|
✗ |
assert(0 <= phaseIdx && phaseIdx < numPhases); |
113 |
|
|
// we assume Henry's and Raoult's laws for the water phase and |
114 |
|
|
// and no interaction between gas molecules of different |
115 |
|
|
// components, so all phases are ideal mixtures! |
116 |
|
|
return true; |
117 |
|
|
} |
118 |
|
|
|
119 |
|
|
/*! |
120 |
|
|
* \brief Returns true if and only if a fluid phase is assumed to |
121 |
|
|
* be compressible. |
122 |
|
|
* |
123 |
|
|
* Compressible means that the partial derivative of the density |
124 |
|
|
* to the fluid pressure is always larger than zero. |
125 |
|
|
* |
126 |
|
|
* \param phaseIdx The index of the fluid phase to consider |
127 |
|
|
*/ |
128 |
|
|
static constexpr bool isCompressible(int phaseIdx) |
129 |
|
|
{ |
130 |
|
|
assert(0 <= phaseIdx && phaseIdx < numPhases); |
131 |
|
|
// gases are always compressible |
132 |
|
|
if (phaseIdx == nPhaseIdx) |
133 |
|
|
return true; |
134 |
|
|
// the water component decides for the liquid phase... |
135 |
|
|
return H2O::liquidIsCompressible(); |
136 |
|
|
} |
137 |
|
|
|
138 |
|
|
/*! |
139 |
|
|
* \brief Returns true if and only if a fluid phase is assumed to |
140 |
|
|
* be an ideal gas. |
141 |
|
|
* |
142 |
|
|
* \param phaseIdx The index of the fluid phase to consider |
143 |
|
|
*/ |
144 |
|
|
static bool isIdealGas(int phaseIdx) |
145 |
|
|
{ |
146 |
|
|
assert(0 <= phaseIdx && phaseIdx < numPhases); |
147 |
|
|
|
148 |
|
|
if (phaseIdx == nPhaseIdx) |
149 |
|
|
// let the components decide |
150 |
|
|
return H2O::gasIsIdeal() && N2::gasIsIdeal(); |
151 |
|
|
return false; // not a gas |
152 |
|
|
} |
153 |
|
|
|
154 |
|
|
/**************************************** |
155 |
|
|
* Component related static parameters |
156 |
|
|
****************************************/ |
157 |
|
|
|
158 |
|
|
//! Number of components in the fluid system |
159 |
|
|
static constexpr int numComponents = 2; |
160 |
|
|
|
161 |
|
|
static constexpr int H2OIdx = wCompIdx; |
162 |
|
|
static constexpr int N2Idx = nCompIdx; |
163 |
|
|
|
164 |
|
|
//! The components for pure water |
165 |
|
|
using H2O = SimpleH2O; |
166 |
|
|
|
167 |
|
|
//! The components for pure nitrogen |
168 |
|
|
using N2 = SimpleN2; |
169 |
|
|
|
170 |
|
|
/*! |
171 |
|
|
* \brief Returns the human readable name of a component |
172 |
|
|
* |
173 |
|
|
* \param compIdx The index of the component to consider |
174 |
|
|
*/ |
175 |
|
✗ |
static std::string componentName(int compIdx) |
176 |
|
|
{ |
177 |
|
✗ |
static std::string name[] = { |
178 |
|
|
H2O::name(), |
179 |
|
|
N2::name() |
180 |
|
|
}; |
181 |
|
|
|
182 |
|
✗ |
assert(0 <= compIdx && compIdx < numComponents); |
183 |
|
✗ |
return name[compIdx]; |
184 |
|
|
} |
185 |
|
|
|
186 |
|
|
/*! |
187 |
|
|
* \brief Returns the molar mass of a component in \f$\mathrm{[kg/mol]}\f$. |
188 |
|
|
* |
189 |
|
|
* \param compIdx The index of the component to consider |
190 |
|
|
*/ |
191 |
|
|
static Scalar molarMass(int compIdx) |
192 |
|
|
{ |
193 |
|
|
static const Scalar M[] = { |
194 |
|
|
H2O::molarMass(), |
195 |
|
|
N2::molarMass(), |
196 |
|
|
}; |
197 |
|
|
|
198 |
|
|
assert(0 <= compIdx && compIdx < numComponents); |
199 |
|
✗ |
return M[compIdx]; |
200 |
|
|
} |
201 |
|
|
|
202 |
|
|
/*! |
203 |
|
|
* \brief Critical temperature of a component \f$\mathrm{[K]}\f$. |
204 |
|
|
* |
205 |
|
|
* \param compIdx The index of the component to consider |
206 |
|
|
*/ |
207 |
|
|
static Scalar criticalTemperature(int compIdx) |
208 |
|
|
{ |
209 |
|
|
static const Scalar Tcrit[] = { |
210 |
|
|
H2O::criticalTemperature(), // H2O |
211 |
|
|
N2::criticalTemperature() // N2 |
212 |
|
|
}; |
213 |
|
|
|
214 |
|
|
assert(0 <= compIdx && compIdx < numComponents); |
215 |
|
|
return Tcrit[compIdx]; |
216 |
|
|
} |
217 |
|
|
|
218 |
|
|
/*! |
219 |
|
|
* \brief Critical pressure of a component \f$\mathrm{[Pa]}\f$. |
220 |
|
|
* |
221 |
|
|
* \param compIdx The index of the component to consider |
222 |
|
|
*/ |
223 |
|
|
static Scalar criticalPressure(int compIdx) |
224 |
|
|
{ |
225 |
|
|
static const Scalar pcrit[] = { |
226 |
|
|
H2O::criticalPressure(), |
227 |
|
|
N2::criticalPressure() |
228 |
|
|
}; |
229 |
|
|
|
230 |
|
|
assert(0 <= compIdx && compIdx < numComponents); |
231 |
|
|
return pcrit[compIdx]; |
232 |
|
|
} |
233 |
|
|
|
234 |
|
|
/*! |
235 |
|
|
* \brief Molar volume of a component at the critical point \f$\mathrm{[m^3/mol]}\f$. |
236 |
|
|
* |
237 |
|
|
* \param compIdx The index of the component to consider |
238 |
|
|
*/ |
239 |
|
|
static Scalar criticalMolarVolume(int compIdx) |
240 |
|
|
{ |
241 |
|
|
DUNE_THROW(Dune::NotImplemented, "criticalMolarVolume()"); |
242 |
|
|
} |
243 |
|
|
|
244 |
|
|
/*! |
245 |
|
|
* \brief The acentric factor of a component \f$\mathrm{[-]}\f$. |
246 |
|
|
* |
247 |
|
|
* \param compIdx The index of the component to consider |
248 |
|
|
*/ |
249 |
|
|
static Scalar acentricFactor(int compIdx) |
250 |
|
|
{ |
251 |
|
|
static const Scalar accFac[] = { |
252 |
|
|
H2O::acentricFactor(), // H2O (from Reid, et al.) |
253 |
|
|
N2::acentricFactor() |
254 |
|
|
}; |
255 |
|
|
|
256 |
|
|
assert(0 <= compIdx && compIdx < numComponents); |
257 |
|
|
return accFac[compIdx]; |
258 |
|
|
} |
259 |
|
|
|
260 |
|
|
/**************************************** |
261 |
|
|
* thermodynamic relations |
262 |
|
|
****************************************/ |
263 |
|
|
|
264 |
|
|
/*! |
265 |
|
|
* \brief Initializes the fluid system's static parameters generically |
266 |
|
|
* |
267 |
|
|
* If a tabulated H2O component is used, we do our best to create |
268 |
|
|
* tables that always work. |
269 |
|
|
*/ |
270 |
|
|
static void init() |
271 |
|
|
{ |
272 |
|
|
init(/*tempMin=*/273.15, |
273 |
|
|
/*tempMax=*/623.15, |
274 |
|
|
/*numTemp=*/100, |
275 |
|
|
/*pMin=*/0.0, |
276 |
|
|
/*pMax=*/20e6, |
277 |
|
|
/*numP=*/200); |
278 |
|
|
} |
279 |
|
|
|
280 |
|
|
/*! |
281 |
|
|
* \brief Initializes the fluid system's static parameters using |
282 |
|
|
* problem specific temperature and pressure ranges |
283 |
|
|
* |
284 |
|
|
* \param tempMin The minimum temperature used for tabulation of water \f$\mathrm{[K]}\f$ |
285 |
|
|
* \param tempMax The maximum temperature used for tabulation of water \f$\mathrm{[K]}\f$ |
286 |
|
|
* \param nTemp The number of ticks on the temperature axis of the table of water |
287 |
|
|
* \param pressMin The minimum pressure used for tabulation of water \f$\mathrm{[Pa]}\f$ |
288 |
|
|
* \param pressMax The maximum pressure used for tabulation of water \f$\mathrm{[Pa]}\f$ |
289 |
|
|
* \param nPress The number of ticks on the pressure axis of the table of water |
290 |
|
|
*/ |
291 |
|
|
static void init(Scalar tempMin, Scalar tempMax, unsigned nTemp, |
292 |
|
|
Scalar pressMin, Scalar pressMax, unsigned nPress) |
293 |
|
|
{ |
294 |
|
|
std::cout << "Using very simple pure water fluid system\n"; |
295 |
|
|
} |
296 |
|
|
|
297 |
|
|
using Base::density; |
298 |
|
|
/*! |
299 |
|
|
* \brief Calculates the density \f$\mathrm{[kg/m^3]}\f$ of a fluid phase |
300 |
|
|
* |
301 |
|
|
* \param fluidState An arbitrary fluid state |
302 |
|
|
* \param phaseIdx The index of the fluid phase to consider |
303 |
|
|
*/ |
304 |
|
|
template <class FluidState> |
305 |
|
|
static Scalar density(const FluidState &fluidState, |
306 |
|
|
int phaseIdx) |
307 |
|
|
{ |
308 |
|
✗ |
assert(0 <= phaseIdx && phaseIdx < numPhases); |
309 |
|
|
|
310 |
|
|
// liquid phase |
311 |
|
✗ |
if (phaseIdx == wPhaseIdx) |
312 |
|
|
{ |
313 |
|
|
return 1044.0; |
314 |
|
|
} |
315 |
|
|
else if (phaseIdx == nPhaseIdx)// gas phase |
316 |
|
|
{ |
317 |
|
|
return 1.679; |
318 |
|
|
} |
319 |
|
|
else DUNE_THROW(Dune::NotImplemented, "Wrong phase index"); |
320 |
|
|
} |
321 |
|
|
|
322 |
|
|
using Base::molarDensity; |
323 |
|
|
/*! |
324 |
|
|
* \brief The molar density \f$\rho_{mol,\alpha}\f$ |
325 |
|
|
* of a fluid phase \f$\alpha\f$ in \f$\mathrm{[mol/m^3]}\f$ |
326 |
|
|
* |
327 |
|
|
* This is a specific molar density for the combustion test |
328 |
|
|
*/ |
329 |
|
|
template <class FluidState> |
330 |
|
✗ |
static Scalar molarDensity(const FluidState &fluidState, int phaseIdx) |
331 |
|
|
{ |
332 |
|
✗ |
if (phaseIdx == wPhaseIdx) |
333 |
|
|
{ |
334 |
|
✗ |
return density(fluidState, phaseIdx)/fluidState.averageMolarMass(phaseIdx); |
335 |
|
|
} |
336 |
|
✗ |
else if (phaseIdx == nPhaseIdx) |
337 |
|
|
{ |
338 |
|
✗ |
return density(fluidState, phaseIdx)/fluidState.averageMolarMass(phaseIdx); |
339 |
|
|
} |
340 |
|
✗ |
else DUNE_THROW(Dune::NotImplemented, "Wrong phase index"); |
341 |
|
|
} |
342 |
|
|
|
343 |
|
|
using Base::viscosity; |
344 |
|
|
/*! |
345 |
|
|
* \brief Calculates the dynamic viscosity of a fluid phase \f$\mathrm{[Pa*s]}\f$ |
346 |
|
|
* |
347 |
|
|
* \param fluidState An arbitrary fluid state |
348 |
|
|
* \param phaseIdx The index of the fluid phase to consider |
349 |
|
|
*/ |
350 |
|
|
template <class FluidState> |
351 |
|
|
static Scalar viscosity(const FluidState &fluidState, |
352 |
|
|
int phaseIdx) |
353 |
|
|
{ |
354 |
|
✗ |
assert(0 <= phaseIdx && phaseIdx < numPhases); |
355 |
|
|
|
356 |
|
|
// liquid phase |
357 |
|
✗ |
if (phaseIdx == wPhaseIdx) |
358 |
|
|
{ |
359 |
|
|
return 2.694e-7 * density(fluidState, phaseIdx); |
360 |
|
|
} |
361 |
|
|
else if (phaseIdx == nPhaseIdx) // gas phase |
362 |
|
|
{ |
363 |
|
|
return 7.16e-6 * density(fluidState, phaseIdx); |
364 |
|
|
} |
365 |
|
|
else DUNE_THROW(Dune::NotImplemented, "Wrong phase index"); |
366 |
|
|
} |
367 |
|
|
|
368 |
|
|
/*! |
369 |
|
|
* \brief Calculates the temperature \f$\mathrm{[K]}\f$ of vapor at a given pressure on the vapor pressure curve. |
370 |
|
|
* |
371 |
|
|
* \param fluidState An arbitrary fluid state |
372 |
|
|
* \param phaseIdx The index of the fluid phase to consider |
373 |
|
|
*/ |
374 |
|
|
template <class FluidState> |
375 |
|
|
static Scalar vaporTemperature(const FluidState &fluidState, |
376 |
|
|
const unsigned int phaseIdx) |
377 |
|
|
{ |
378 |
|
|
assert(0 <= phaseIdx && phaseIdx < numPhases); |
379 |
|
✗ |
Scalar pressure = fluidState.pressure(nPhaseIdx); |
380 |
|
|
|
381 |
|
✗ |
return IAPWS::Region4<Scalar>::vaporTemperature( pressure ); |
382 |
|
|
} |
383 |
|
|
|
384 |
|
|
using Base::fugacityCoefficient; |
385 |
|
|
/*! |
386 |
|
|
* \brief Calculates the fugacity coefficient \f$\mathrm{[-]}\f$ of an individual |
387 |
|
|
* component in a fluid phase |
388 |
|
|
* |
389 |
|
|
* The fugacity coefficient \f$\phi^\kappa_\alpha\f$ of |
390 |
|
|
* component \f$\kappa\f$ in phase \f$\alpha\f$ is connected to |
391 |
|
|
* the fugacity \f$f^\kappa_\alpha\f$ and the component's mole |
392 |
|
|
* fraction \f$x^\kappa_\alpha\f$ by means of the relation |
393 |
|
|
* |
394 |
|
|
* \f[ |
395 |
|
|
f^\kappa_\alpha = \phi^\kappa_\alpha\;x^\kappa_\alpha\;p_\alpha |
396 |
|
|
\f] |
397 |
|
|
* where \f$p_\alpha\f$ is the pressure of the fluid phase. |
398 |
|
|
* |
399 |
|
|
* The quantity "fugacity" itself is just an other way to express |
400 |
|
|
* the chemical potential \f$\zeta^\kappa_\alpha\f$ of the |
401 |
|
|
* component. It is defined via |
402 |
|
|
* |
403 |
|
|
* \f[ |
404 |
|
|
f^\kappa_\alpha := \exp\left\{\frac{\zeta^\kappa_\alpha}{k_B T_\alpha} \right\} |
405 |
|
|
\f] |
406 |
|
|
* where \f$k_B = 1.380\cdot10^{-23}\;J/K\f$ is the Boltzmann constant. |
407 |
|
|
* |
408 |
|
|
* \param fluidState An arbitrary fluid state |
409 |
|
|
* \param phaseIdx The index of the fluid phase to consider |
410 |
|
|
* \param compIdx The index of the component to consider |
411 |
|
|
*/ |
412 |
|
|
template <class FluidState> |
413 |
|
✗ |
static Scalar fugacityCoefficient(const FluidState &fluidState, |
414 |
|
|
int phaseIdx, |
415 |
|
|
int compIdx) |
416 |
|
|
{ |
417 |
|
✗ |
assert(0 <= phaseIdx && phaseIdx < numPhases); |
418 |
|
✗ |
assert(0 <= compIdx && compIdx < numComponents); |
419 |
|
|
|
420 |
|
✗ |
Scalar T = fluidState.temperature(phaseIdx); |
421 |
|
✗ |
Scalar p = fluidState.pressure(phaseIdx); |
422 |
|
|
|
423 |
|
|
// liquid phase |
424 |
|
✗ |
if (phaseIdx == wPhaseIdx) |
425 |
|
|
{ |
426 |
|
✗ |
if (compIdx == H2OIdx) |
427 |
|
✗ |
return H2O::vaporPressure(T)/p; |
428 |
|
✗ |
return BinaryCoeff::H2O_N2::henry(T)/p; |
429 |
|
|
} |
430 |
|
|
|
431 |
|
|
// for the gas phase, assume an ideal gas when it comes to |
432 |
|
|
// fugacity (-> fugacity == partial pressure) |
433 |
|
|
return 1.0; |
434 |
|
|
} |
435 |
|
|
|
436 |
|
|
using Base::diffusionCoefficient; |
437 |
|
|
/*! |
438 |
|
|
* \brief Calculates the molecular diffusion coefficient for a |
439 |
|
|
* component in a fluid phase \f$\mathrm{[mol^2 * s / (kg*m^3)]}\f$ |
440 |
|
|
* |
441 |
|
|
* \param fluidState An arbitrary fluid state |
442 |
|
|
* \param phaseIdx The index of the fluid phase to consider |
443 |
|
|
* \param compIdx The index of the component to consider |
444 |
|
|
*/ |
445 |
|
|
template <class FluidState> |
446 |
|
|
static Scalar diffusionCoefficient(const FluidState &fluidState, |
447 |
|
|
int phaseIdx, |
448 |
|
|
int compIdx) |
449 |
|
|
{ |
450 |
|
|
DUNE_THROW(Dune::NotImplemented, "Diffusion coefficients"); |
451 |
|
|
} |
452 |
|
|
|
453 |
|
|
using Base::binaryDiffusionCoefficient; |
454 |
|
|
/*! |
455 |
|
|
* \brief Given a phase's composition, temperature and pressure, |
456 |
|
|
* returns the binary diffusion coefficient \f$\mathrm{[m^2/s]}\f$ for components |
457 |
|
|
* \f$i\f$ and \f$j\f$ in this phase. |
458 |
|
|
* |
459 |
|
|
* \param fluidState An arbitrary fluid state |
460 |
|
|
* \param phaseIdx The index of the fluid phase to consider |
461 |
|
|
* \param compIIdx The index of the first component to consider |
462 |
|
|
* \param compJIdx The index of the second component to consider |
463 |
|
|
*/ |
464 |
|
|
template <class FluidState> |
465 |
|
|
static Scalar binaryDiffusionCoefficient(const FluidState &fluidState, |
466 |
|
|
int phaseIdx, |
467 |
|
|
int compIIdx, |
468 |
|
|
int compJIdx) |
469 |
|
|
|
470 |
|
|
{ |
471 |
|
|
DUNE_THROW(Dune::NotImplemented, "Binary Diffusion coefficients"); |
472 |
|
|
} |
473 |
|
|
|
474 |
|
|
using Base::enthalpy; |
475 |
|
|
/*! |
476 |
|
|
* \brief Calculates specific enthalpy \f$\mathrm{[J/kg]}\f$. |
477 |
|
|
* |
478 |
|
|
* \param fluidState An arbitrary fluid state |
479 |
|
|
* \param phaseIdx The index of the fluid phase to consider |
480 |
|
|
*/ |
481 |
|
|
template <class FluidState> |
482 |
|
✗ |
static Scalar enthalpy(const FluidState &fluidState, |
483 |
|
|
int phaseIdx) |
484 |
|
|
{ |
485 |
|
✗ |
assert(0 <= phaseIdx && phaseIdx < numPhases); |
486 |
|
✗ |
Scalar temperature = fluidState.temperature(phaseIdx); |
487 |
|
|
|
488 |
|
✗ |
const Scalar cp = heatCapacity(fluidState, phaseIdx); |
489 |
|
|
|
490 |
|
|
// liquid phase |
491 |
|
✗ |
if (phaseIdx == wPhaseIdx) |
492 |
|
|
{ |
493 |
|
✗ |
return cp * (temperature - 373.15); |
494 |
|
|
} |
495 |
|
|
else if (phaseIdx == nPhaseIdx) // gas phase |
496 |
|
|
{ |
497 |
|
✗ |
return cp * (temperature - 373.15) + 2.257e6; |
498 |
|
|
} |
499 |
|
|
else DUNE_THROW(Dune::NotImplemented, "Wrong phase index"); |
500 |
|
|
} |
501 |
|
|
|
502 |
|
|
using Base::thermalConductivity; |
503 |
|
|
/*! |
504 |
|
|
* \brief Thermal conductivity of a fluid phase \f$\mathrm{[W/(m K)]}\f$. |
505 |
|
|
* |
506 |
|
|
* Use the conductivity of vapor and liquid water at 100°C |
507 |
|
|
* |
508 |
|
|
* \param fluidState An arbitrary fluid state |
509 |
|
|
* \param phaseIdx The index of the fluid phase to consider |
510 |
|
|
*/ |
511 |
|
|
template <class FluidState> |
512 |
|
|
static Scalar thermalConductivity(const FluidState &fluidState, |
513 |
|
|
const int phaseIdx) |
514 |
|
|
{ |
515 |
|
✗ |
assert(0 <= phaseIdx && phaseIdx < numPhases); |
516 |
|
|
// liquid phase |
517 |
|
✗ |
if (phaseIdx == wPhaseIdx) |
518 |
|
|
{ |
519 |
|
|
return 0.68; |
520 |
|
|
} |
521 |
|
|
else if (phaseIdx == nPhaseIdx) // gas phase |
522 |
|
|
{ |
523 |
|
|
return 0.0248; |
524 |
|
|
} |
525 |
|
|
else DUNE_THROW(Dune::NotImplemented, "Wrong phase index"); |
526 |
|
|
} |
527 |
|
|
|
528 |
|
|
using Base::heatCapacity; |
529 |
|
|
/*! |
530 |
|
|
* \brief Specific isobaric heat capacity of a fluid phase. |
531 |
|
|
* \f$\mathrm{[J/kg / K]}\f$. |
532 |
|
|
* |
533 |
|
|
* \param fluidState An arbitrary fluid state |
534 |
|
|
* \param phaseIdx The index of the fluid phase to consider |
535 |
|
|
*/ |
536 |
|
|
template <class FluidState> |
537 |
|
|
static Scalar heatCapacity(const FluidState &fluidState, |
538 |
|
|
int phaseIdx) |
539 |
|
|
{ |
540 |
|
✗ |
assert(0 <= phaseIdx && phaseIdx < numPhases); |
541 |
|
|
// liquid phase |
542 |
|
✗ |
if (phaseIdx == wPhaseIdx) |
543 |
|
|
{ |
544 |
|
|
return 4.217e3; |
545 |
|
|
} |
546 |
|
|
else if (phaseIdx == nPhaseIdx) // gas phase |
547 |
|
|
{ |
548 |
|
|
return 2.029e3; |
549 |
|
|
} |
550 |
|
|
else DUNE_THROW(Dune::NotImplemented, "Wrong phase index"); |
551 |
|
|
} |
552 |
|
|
}; |
553 |
|
|
|
554 |
|
|
} // end namespace FluidSystems |
555 |
|
|
} // end namespace Dumux |
556 |
|
|
|
557 |
|
|
#endif |
558 |
|
|
|