Line | Branch | Exec | Source |
---|---|---|---|
1 | // -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- | ||
2 | // vi: set et ts=4 sw=4 sts=4: | ||
3 | // | ||
4 | // SPDX-FileCopyrightText: Copyright © DuMux Project contributors, see AUTHORS.md in root folder | ||
5 | // SPDX-License-Identifier: GPL-3.0-or-later | ||
6 | // | ||
7 | /*! | ||
8 | * \file | ||
9 | * \ingroup CCTpfaFlux | ||
10 | * \brief Darcy's law for cell-centered finite volume schemes with two-point flux approximation | ||
11 | */ | ||
12 | #ifndef DUMUX_DISCRETIZATION_CC_TPFA_DARCYS_LAW_HH | ||
13 | #define DUMUX_DISCRETIZATION_CC_TPFA_DARCYS_LAW_HH | ||
14 | |||
15 | #include <dumux/common/math.hh> | ||
16 | #include <dumux/common/parameters.hh> | ||
17 | #include <dumux/common/properties.hh> | ||
18 | |||
19 | #include <dumux/discretization/method.hh> | ||
20 | #include <dumux/discretization/extrusion.hh> | ||
21 | #include <dumux/discretization/cellcentered/tpfa/computetransmissibility.hh> | ||
22 | |||
23 | namespace Dumux { | ||
24 | |||
25 | // forward declarations | ||
26 | template<class TypeTag, class DiscretizationMethod> | ||
27 | class DarcysLawImplementation; | ||
28 | |||
29 | /*! | ||
30 | * \ingroup CCTpfaFlux | ||
31 | * \brief Darcy's law for cell-centered finite volume schemes with two-point flux approximation | ||
32 | * \note Darcy's law is specialized for network and surface grids (i.e. if grid dim < dimWorld) | ||
33 | * \tparam Scalar the scalar type for scalar physical quantities | ||
34 | * \tparam GridGeometry the grid geometry | ||
35 | * \tparam isNetwork whether we are computing on a network grid embedded in a higher world dimension | ||
36 | */ | ||
37 | template<class Scalar, class GridGeometry, bool isNetwork> | ||
38 | class CCTpfaDarcysLaw; | ||
39 | |||
40 | /*! | ||
41 | * \ingroup CCTpfaFlux | ||
42 | * \brief Darcy's law for cell-centered finite volume schemes with two-point flux approximation | ||
43 | * \note Darcy's law is specialized for network and surface grids (i.e. if grid dim < dimWorld) | ||
44 | */ | ||
45 | template <class TypeTag> | ||
46 | class DarcysLawImplementation<TypeTag, DiscretizationMethods::CCTpfa> | ||
47 | : public CCTpfaDarcysLaw<GetPropType<TypeTag, Properties::Scalar>, | ||
48 | GetPropType<TypeTag, Properties::GridGeometry>, | ||
49 | (GetPropType<TypeTag, Properties::GridGeometry>::GridView::dimension < GetPropType<TypeTag, Properties::GridGeometry>::GridView::dimensionworld)> | ||
50 | {}; | ||
51 | |||
52 | /*! | ||
53 | * \ingroup CCTpfaFlux | ||
54 | * \brief Class that fills the cache corresponding to tpfa Darcy's Law | ||
55 | */ | ||
56 | template<class GridGeometry> | ||
57 | class TpfaDarcysLawCacheFiller | ||
58 | { | ||
59 | using FVElementGeometry = typename GridGeometry::LocalView; | ||
60 | using SubControlVolumeFace = typename GridGeometry::SubControlVolumeFace; | ||
61 | using Element = typename GridGeometry::GridView::template Codim<0>::Entity; | ||
62 | |||
63 | public: | ||
64 | //! Function to fill a TpfaDarcysLawCache of a given scvf | ||
65 | //! This interface has to be met by any advection-related cache filler class | ||
66 | //! TODO: Probably get cache type out of the filler | ||
67 | template<class FluxVariablesCache, class Problem, class ElementVolumeVariables, class FluxVariablesCacheFiller> | ||
68 | 208576029 | static void fill(FluxVariablesCache& scvfFluxVarsCache, | |
69 | const Problem& problem, | ||
70 | const Element& element, | ||
71 | const FVElementGeometry& fvGeometry, | ||
72 | const ElementVolumeVariables& elemVolVars, | ||
73 | const SubControlVolumeFace& scvf, | ||
74 | const FluxVariablesCacheFiller& fluxVarsCacheFiller) | ||
75 | { | ||
76 | 406098944 | scvfFluxVarsCache.updateAdvection(problem, element, fvGeometry, elemVolVars, scvf); | |
77 | } | ||
78 | }; | ||
79 | |||
80 | /*! | ||
81 | * \ingroup CCTpfaFlux | ||
82 | * \brief The cache corresponding to tpfa Darcy's Law | ||
83 | */ | ||
84 | template<class AdvectionType, class GridGeometry> | ||
85 | 2280 | class TpfaDarcysLawCache | |
86 | { | ||
87 | using Scalar = typename AdvectionType::Scalar; | ||
88 | using FVElementGeometry = typename GridGeometry::LocalView; | ||
89 | using SubControlVolumeFace = typename GridGeometry::SubControlVolumeFace; | ||
90 | using Element = typename GridGeometry::GridView::template Codim<0>::Entity; | ||
91 | |||
92 | public: | ||
93 | using Filler = TpfaDarcysLawCacheFiller<GridGeometry>; | ||
94 | |||
95 | template<class Problem, class ElementVolumeVariables> | ||
96 | 197696415 | void updateAdvection(const Problem& problem, | |
97 | const Element& element, | ||
98 | const FVElementGeometry& fvGeometry, | ||
99 | const ElementVolumeVariables& elemVolVars, | ||
100 | const SubControlVolumeFace &scvf) | ||
101 | { | ||
102 | 197696415 | tij_ = AdvectionType::calculateTransmissibility(problem, element, fvGeometry, elemVolVars, scvf); | |
103 | } | ||
104 | |||
105 | 39294082 | const Scalar& advectionTij() const | |
106 | 530106200 | { return tij_; } | |
107 | |||
108 | private: | ||
109 | Scalar tij_; | ||
110 | }; | ||
111 | |||
112 | /*! | ||
113 | * \ingroup CCTpfaFlux | ||
114 | * \brief Specialization of the CCTpfaDarcysLaw grids where dim=dimWorld | ||
115 | */ | ||
116 | template<class ScalarType, class GridGeometry> | ||
117 | class CCTpfaDarcysLaw<ScalarType, GridGeometry, /*isNetwork*/ false> | ||
118 | { | ||
119 | using ThisType = CCTpfaDarcysLaw<ScalarType, GridGeometry, /*isNetwork*/ false>; | ||
120 | using FVElementGeometry = typename GridGeometry::LocalView; | ||
121 | using SubControlVolume = typename GridGeometry::SubControlVolume; | ||
122 | using SubControlVolumeFace = typename GridGeometry::SubControlVolumeFace; | ||
123 | using Extrusion = Extrusion_t<GridGeometry>; | ||
124 | using GridView = typename GridGeometry::GridView; | ||
125 | using Element = typename GridView::template Codim<0>::Entity; | ||
126 | |||
127 | static constexpr int dim = GridView::dimension; | ||
128 | static constexpr int dimWorld = GridView::dimensionworld; | ||
129 | |||
130 | using GlobalPosition = typename Element::Geometry::GlobalCoordinate; | ||
131 | |||
132 | public: | ||
133 | //! state the scalar type of the law | ||
134 | using Scalar = ScalarType; | ||
135 | |||
136 | using DiscretizationMethod = DiscretizationMethods::CCTpfa; | ||
137 | //! state the discretization method this implementation belongs to | ||
138 | static constexpr DiscretizationMethod discMethod{}; | ||
139 | |||
140 | //! state the type for the corresponding cache | ||
141 | using Cache = TpfaDarcysLawCache<ThisType, GridGeometry>; | ||
142 | |||
143 | /*! | ||
144 | * \brief Returns the advective flux of a fluid phase | ||
145 | * across the given sub-control volume face. | ||
146 | * \note This assembles the term | ||
147 | * \f$-|\sigma| \mathbf{n}^T \mathbf{K} \left( \nabla p - \rho \mathbf{g} \right)\f$, | ||
148 | * where \f$|\sigma|\f$ is the area of the face and \f$\mathbf{n}\f$ is the outer | ||
149 | * normal vector. Thus, the flux is given in N*m, and can be converted | ||
150 | * into a volume flux (m^3/s) or mass flux (kg/s) by applying an upwind scheme | ||
151 | * for the mobility or the product of density and mobility, respectively. | ||
152 | */ | ||
153 | template<class Problem, class ElementVolumeVariables, class ElementFluxVarsCache> | ||
154 | 582401360 | static Scalar flux(const Problem& problem, | |
155 | const Element& element, | ||
156 | const FVElementGeometry& fvGeometry, | ||
157 | const ElementVolumeVariables& elemVolVars, | ||
158 | const SubControlVolumeFace& scvf, | ||
159 | int phaseIdx, | ||
160 | const ElementFluxVarsCache& elemFluxVarsCache) | ||
161 | { | ||
162 |
5/6✓ Branch 0 taken 268 times.
✓ Branch 1 taken 578552964 times.
✓ Branch 3 taken 217 times.
✓ Branch 4 taken 51 times.
✓ Branch 6 taken 217 times.
✗ Branch 7 not taken.
|
582401360 | static const bool enableGravity = getParamFromGroup<bool>(problem.paramGroup(), "Problem.EnableGravity"); |
163 | |||
164 |
2/2✓ Branch 0 taken 132274327 times.
✓ Branch 1 taken 88901000 times.
|
582401360 | const auto& fluxVarsCache = elemFluxVarsCache[scvf]; |
165 | |||
166 | // Get the inside and outside volume variables | ||
167 |
2/2✓ Branch 0 taken 132274327 times.
✓ Branch 1 taken 88901000 times.
|
807424815 | const auto& insideScv = fvGeometry.scv(scvf.insideScvIdx()); |
168 | 582401360 | const auto& insideVolVars = elemVolVars[insideScv]; | |
169 | 582401360 | const auto& outsideVolVars = elemVolVars[scvf.outsideScvIdx()]; | |
170 | |||
171 |
2/2✓ Branch 0 taken 490971998 times.
✓ Branch 1 taken 87581234 times.
|
582401360 | if (enableGravity) |
172 | { | ||
173 | // do averaging for the density over all neighboring elements | ||
174 |
4/4✓ Branch 0 taken 941265 times.
✓ Branch 1 taken 490030733 times.
✓ Branch 2 taken 30658732 times.
✓ Branch 3 taken 38532 times.
|
956985179 | const auto rho = scvf.boundary() ? outsideVolVars.density(phaseIdx) |
175 | 490039769 | : (insideVolVars.density(phaseIdx) + outsideVolVars.density(phaseIdx))*0.5; | |
176 | |||
177 | // Obtain inside and outside pressures | ||
178 |
1/2✓ Branch 0 taken 8100024 times.
✗ Branch 1 not taken.
|
490981214 | const auto pInside = insideVolVars.pressure(phaseIdx); |
179 | 490981214 | const auto pOutside = outsideVolVars.pressure(phaseIdx); | |
180 | |||
181 | 490981214 | const auto& tij = fluxVarsCache.advectionTij(); | |
182 |
2/2✓ Branch 0 taken 22558708 times.
✓ Branch 1 taken 38532 times.
|
490981214 | const auto& g = problem.spatialParams().gravity(scvf.ipGlobal()); |
183 | |||
184 | //! compute alpha := n^T*K*g | ||
185 |
2/2✓ Branch 0 taken 490030733 times.
✓ Branch 1 taken 941265 times.
|
959365188 | const auto alpha_inside = vtmv(scvf.unitOuterNormal(), insideVolVars.permeability(), g)*insideVolVars.extrusionFactor(); |
186 | |||
187 |
2/2✓ Branch 0 taken 490030733 times.
✓ Branch 1 taken 941265 times.
|
490981214 | Scalar flux = tij*(pInside - pOutside) + rho*Extrusion::area(fvGeometry, scvf)*alpha_inside; |
188 | |||
189 | //! On interior faces we have to add K-weighted gravitational contributions | ||
190 |
2/2✓ Branch 0 taken 490030733 times.
✓ Branch 1 taken 941265 times.
|
490981214 | if (!scvf.boundary()) |
191 | { | ||
192 |
2/2✓ Branch 0 taken 67038768 times.
✓ Branch 1 taken 422991965 times.
|
490039709 | const auto& outsideScv = fvGeometry.scv(scvf.outsideScvIdx()); |
193 |
2/2✓ Branch 0 taken 160392 times.
✓ Branch 1 taken 157235284 times.
|
490039709 | const auto outsideK = outsideVolVars.permeability(); |
194 |
2/2✓ Branch 0 taken 160392 times.
✓ Branch 1 taken 489870341 times.
|
976123618 | const auto outsideTi = fvGeometry.gridGeometry().isPeriodic() |
195 |
2/2✓ Branch 0 taken 160392 times.
✓ Branch 1 taken 489870341 times.
|
490039709 | ? computeTpfaTransmissibility(fvGeometry, fvGeometry.flipScvf(scvf.index()), outsideScv, outsideK, outsideVolVars.extrusionFactor()) |
196 | 508483305 | : -1.0*computeTpfaTransmissibility(fvGeometry, scvf, outsideScv, outsideK, outsideVolVars.extrusionFactor()); | |
197 | 957520710 | const auto alpha_outside = vtmv(scvf.unitOuterNormal(), outsideK, g)*outsideVolVars.extrusionFactor(); | |
198 | |||
199 | 490039709 | flux -= rho*tij/outsideTi*(alpha_inside - alpha_outside); | |
200 | } | ||
201 | |||
202 | 490822094 | return flux; | |
203 | } | ||
204 | else | ||
205 | { | ||
206 | // Obtain inside and outside pressures | ||
207 |
0/2✗ Branch 0 not taken.
✗ Branch 1 not taken.
|
91420146 | const auto pInside = insideVolVars.pressure(phaseIdx); |
208 | 90440946 | const auto pOutside = outsideVolVars.pressure(phaseIdx); | |
209 | |||
210 | // return flux | ||
211 | 91420146 | return fluxVarsCache.advectionTij()*(pInside - pOutside); | |
212 | } | ||
213 | } | ||
214 | |||
215 | // The flux variables cache has to be bound to an element prior to flux calculations | ||
216 | // During the binding, the transmissibility will be computed and stored using the method below. | ||
217 | template<class Problem, class ElementVolumeVariables> | ||
218 |
2/2✓ Branch 0 taken 92914875 times.
✓ Branch 1 taken 83352498 times.
|
207148589 | static Scalar calculateTransmissibility(const Problem& problem, |
219 | const Element& element, | ||
220 | const FVElementGeometry& fvGeometry, | ||
221 | const ElementVolumeVariables& elemVolVars, | ||
222 | const SubControlVolumeFace& scvf) | ||
223 | { | ||
224 |
2/2✓ Branch 0 taken 1200 times.
✓ Branch 1 taken 1080 times.
|
2280 | Scalar tij; |
225 | |||
226 |
2/2✓ Branch 0 taken 92916075 times.
✓ Branch 1 taken 83353578 times.
|
207148589 | const auto insideScvIdx = scvf.insideScvIdx(); |
227 | 207148589 | const auto& insideScv = fvGeometry.scv(insideScvIdx); | |
228 | 207148589 | const auto& insideVolVars = elemVolVars[insideScvIdx]; | |
229 | |||
230 |
2/2✓ Branch 0 taken 10009121 times.
✓ Branch 1 taken 193024432 times.
|
239891019 | const Scalar ti = computeTpfaTransmissibility(fvGeometry, scvf, insideScv, |
231 | 207148589 | getPermeability_(problem, insideVolVars, scvf.ipGlobal()), | |
232 |
2/2✓ Branch 0 taken 120 times.
✓ Branch 1 taken 2160 times.
|
2280 | insideVolVars.extrusionFactor()); |
233 | |||
234 | // on the boundary (dirichlet) we only need ti | ||
235 |
2/2✓ Branch 0 taken 10009121 times.
✓ Branch 1 taken 193024432 times.
|
207148589 | if (scvf.boundary()) |
236 | 10114757 | tij = Extrusion::area(fvGeometry, scvf)*ti; | |
237 | |||
238 | // otherwise we compute a tpfa harmonic mean | ||
239 | else | ||
240 | { | ||
241 |
2/2✓ Branch 0 taken 83353578 times.
✓ Branch 1 taken 83353578 times.
|
197033832 | const auto outsideScvIdx = scvf.outsideScvIdx(); |
242 | // as we assemble fluxes from the neighbor to our element the outside index | ||
243 | // refers to the scv of our element, so we use the scv method | ||
244 | 197033832 | const auto& outsideScv = fvGeometry.scv(outsideScvIdx); | |
245 |
2/2✓ Branch 1 taken 320784 times.
✓ Branch 2 taken 166386372 times.
|
197033832 | const auto& outsideVolVars = elemVolVars[outsideScvIdx]; |
246 |
2/2✓ Branch 0 taken 320784 times.
✓ Branch 1 taken 192703648 times.
|
197033832 | const Scalar tj = fvGeometry.gridGeometry().isPeriodic() |
247 |
2/2✓ Branch 0 taken 320784 times.
✓ Branch 1 taken 192703648 times.
|
197033832 | ? computeTpfaTransmissibility(fvGeometry, fvGeometry.flipScvf(scvf.index()), outsideScv, getPermeability_(problem, outsideVolVars, scvf.ipGlobal()), outsideVolVars.extrusionFactor()) |
248 | 229416548 | : -1.0*computeTpfaTransmissibility(fvGeometry, scvf, outsideScv, getPermeability_(problem, outsideVolVars, scvf.ipGlobal()), outsideVolVars.extrusionFactor()); | |
249 | |||
250 | // harmonic mean (check for division by zero!) | ||
251 | // TODO: This could lead to problems!? Is there a better way to do this? | ||
252 |
1/2✓ Branch 0 taken 193024432 times.
✗ Branch 1 not taken.
|
197033832 | if (ti*tj <= 0.0) |
253 | tij = 0; | ||
254 | else | ||
255 | 197033832 | tij = Extrusion::area(fvGeometry, scvf)*(ti * tj)/(ti + tj); | |
256 | } | ||
257 | |||
258 | 207148589 | return tij; | |
259 | } | ||
260 | |||
261 | private: | ||
262 | template<class Problem, class VolumeVariables, | ||
263 | std::enable_if_t<!Problem::SpatialParams::evaluatePermeabilityAtScvfIP(), int> = 0> | ||
264 |
2/2✓ Branch 0 taken 196236 times.
✓ Branch 1 taken 25838920 times.
|
51874076 | static decltype(auto) getPermeability_(const Problem& problem, |
265 | const VolumeVariables& volVars, | ||
266 | const GlobalPosition& scvfIpGlobal) | ||
267 |
4/4✓ Branch 0 taken 9896889 times.
✓ Branch 1 taken 157525088 times.
✓ Branch 3 taken 73302 times.
✓ Branch 4 taken 2795844 times.
|
396057985 | { return volVars.permeability(); } |
268 | |||
269 | template<class Problem, class VolumeVariables, | ||
270 | std::enable_if_t<Problem::SpatialParams::evaluatePermeabilityAtScvfIP(), int> = 0> | ||
271 | static decltype(auto) getPermeability_(const Problem& problem, | ||
272 | const VolumeVariables& volVars, | ||
273 | const GlobalPosition& scvfIpGlobal) | ||
274 | { return problem.spatialParams().permeabilityAtPos(scvfIpGlobal); } | ||
275 | }; | ||
276 | |||
277 | /*! | ||
278 | * \ingroup CCTpfaFlux | ||
279 | * \brief Specialization of the CCTpfaDarcysLaw grids where dim < dimWorld (network/surface grids) | ||
280 | */ | ||
281 | template<class ScalarType, class GridGeometry> | ||
282 | class CCTpfaDarcysLaw<ScalarType, GridGeometry, /*isNetwork*/ true> | ||
283 | { | ||
284 | using ThisType = CCTpfaDarcysLaw<ScalarType, GridGeometry, /*isNetwork*/ true>; | ||
285 | using FVElementGeometry = typename GridGeometry::LocalView; | ||
286 | using SubControlVolume = typename GridGeometry::SubControlVolume; | ||
287 | using SubControlVolumeFace = typename GridGeometry::SubControlVolumeFace; | ||
288 | using Extrusion = Extrusion_t<GridGeometry>; | ||
289 | using GridView = typename GridGeometry::GridView; | ||
290 | using Element = typename GridView::template Codim<0>::Entity; | ||
291 | |||
292 | static constexpr int dim = GridView::dimension; | ||
293 | static constexpr int dimWorld = GridView::dimensionworld; | ||
294 | |||
295 | using GlobalPosition = typename Element::Geometry::GlobalCoordinate; | ||
296 | |||
297 | public: | ||
298 | //! state the scalar type of the law | ||
299 | using Scalar = ScalarType; | ||
300 | |||
301 | using DiscretizationMethod = DiscretizationMethods::CCTpfa; | ||
302 | //! state the discretization method this implementation belongs to | ||
303 | static constexpr DiscretizationMethod discMethod{}; | ||
304 | |||
305 | //! state the type for the corresponding cache | ||
306 | using Cache = TpfaDarcysLawCache<ThisType, GridGeometry>; | ||
307 | |||
308 | /*! | ||
309 | * \brief Returns the advective flux of a fluid phase | ||
310 | * across the given sub-control volume face. | ||
311 | * \note This assembles the term | ||
312 | * \f$-|\sigma| \mathbf{n}^T \mathbf{K} \left( \nabla p - \rho \mathbf{g} \right)\f$, | ||
313 | * where \f$|\sigma|\f$ is the area of the face and \f$\mathbf{n}\f$ is the outer | ||
314 | * normal vector. Thus, the flux is given in N*m, and can be converted | ||
315 | * into a volume flux (m^3/s) or mass flux (kg/s) by applying an upwind scheme | ||
316 | * for the mobility or the product of density and mobility, respectively. | ||
317 | */ | ||
318 | template<class Problem, class ElementVolumeVariables, class ElementFluxVarsCache> | ||
319 | 65759581 | static Scalar flux(const Problem& problem, | |
320 | const Element& element, | ||
321 | const FVElementGeometry& fvGeometry, | ||
322 | const ElementVolumeVariables& elemVolVars, | ||
323 | const SubControlVolumeFace& scvf, | ||
324 | int phaseIdx, | ||
325 | const ElementFluxVarsCache& elemFluxVarsCache) | ||
326 | { | ||
327 |
5/6✓ Branch 0 taken 119 times.
✓ Branch 1 taken 62272638 times.
✓ Branch 3 taken 75 times.
✓ Branch 4 taken 44 times.
✓ Branch 6 taken 75 times.
✗ Branch 7 not taken.
|
65759581 | static const bool gravity = getParamFromGroup<bool>(problem.paramGroup(), "Problem.EnableGravity"); |
328 | |||
329 |
2/2✓ Branch 0 taken 1827198 times.
✓ Branch 1 taken 1796939 times.
|
65759581 | const auto& fluxVarsCache = elemFluxVarsCache[scvf]; |
330 | |||
331 | // Get the inside and outside volume variables | ||
332 |
2/2✓ Branch 0 taken 1827198 times.
✓ Branch 1 taken 1796939 times.
|
72870542 | const auto& insideScv = fvGeometry.scv(scvf.insideScvIdx()); |
333 | 65759581 | const auto& insideVolVars = elemVolVars[insideScv]; | |
334 | 65759581 | const auto& outsideVolVars = elemVolVars[scvf.outsideScvIdx()]; | |
335 | |||
336 |
2/2✓ Branch 0 taken 39373642 times.
✓ Branch 1 taken 22899115 times.
|
65759581 | if (gravity) |
337 | { | ||
338 | // do averaging for the density over all neighboring elements | ||
339 | 118280942 | const auto rho = [&]() | |
340 | { | ||
341 | // boundaries | ||
342 |
3/4✓ Branch 0 taken 72052 times.
✓ Branch 1 taken 39301142 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 448 times.
|
39373642 | if (scvf.boundary()) |
343 | 72052 | return outsideVolVars.density(phaseIdx); | |
344 | |||
345 | // inner faces with two neighboring elements | ||
346 |
3/4✓ Branch 0 taken 36863818 times.
✓ Branch 1 taken 2437324 times.
✓ Branch 2 taken 448 times.
✗ Branch 3 not taken.
|
39301590 | else if (scvf.numOutsideScvs() == 1) |
347 | 36864266 | return (insideVolVars.density(phaseIdx) + outsideVolVars.density(phaseIdx))*0.5; | |
348 | |||
349 | // inner faces in networks (general case) | ||
350 | else | ||
351 | { | ||
352 | 2437324 | Scalar rho(insideVolVars.density(phaseIdx)); | |
353 |
2/4✓ Branch 0 taken 8353167 times.
✓ Branch 1 taken 2437324 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
|
10790491 | for (unsigned int i = 0; i < scvf.numOutsideScvs(); ++i) |
354 | { | ||
355 | 8353167 | const auto outsideScvIdx = scvf.outsideScvIdx(i); | |
356 | 8353167 | const auto& outsideVolVars = elemVolVars[outsideScvIdx]; | |
357 | 8353167 | rho += outsideVolVars.density(phaseIdx); | |
358 | } | ||
359 | 2437324 | return rho/(scvf.numOutsideScvs()+1); | |
360 | } | ||
361 | 39453650 | }(); | |
362 | |||
363 | 39453650 | const auto& tij = fluxVarsCache.advectionTij(); | |
364 | 39453650 | const auto& g = problem.spatialParams().gravity(scvf.ipGlobal()); | |
365 | |||
366 | // Obtain inside and outside pressures | ||
367 | 39453650 | const auto pInside = insideVolVars.pressure(phaseIdx); | |
368 | 118280942 | const auto pOutside = [&]() | |
369 | { | ||
370 | // Dirichlet boundaries and inner faces with one neighbor | ||
371 |
3/4✓ Branch 0 taken 36935870 times.
✓ Branch 1 taken 2437324 times.
✓ Branch 2 taken 448 times.
✗ Branch 3 not taken.
|
39373642 | if (scvf.numOutsideScvs() == 1) |
372 | 36936318 | return outsideVolVars.pressure(phaseIdx); | |
373 | |||
374 | // inner faces in networks (general case) | ||
375 | else | ||
376 | { | ||
377 | 2437324 | Scalar sumTi(tij); | |
378 | 2437324 | Scalar sumPTi(tij*pInside); | |
379 | |||
380 | // add inside gravitational contribution | ||
381 | 2437324 | sumPTi += rho*Extrusion::area(fvGeometry, scvf) | |
382 | 2437324 | *insideVolVars.extrusionFactor() | |
383 | 2437324 | *vtmv(scvf.unitOuterNormal(), insideVolVars.permeability(), g); | |
384 | |||
385 |
2/4✓ Branch 0 taken 8353167 times.
✓ Branch 1 taken 2437324 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
|
10790491 | for (unsigned int i = 0; i < scvf.numOutsideScvs(); ++i) |
386 | { | ||
387 | 8353167 | const auto outsideScvIdx = scvf.outsideScvIdx(i); | |
388 | 8353167 | const auto& flippedScvf = fvGeometry.flipScvf(scvf.index(), i); | |
389 | 8353167 | const auto& outsideVolVars = elemVolVars[outsideScvIdx]; | |
390 | 8353167 | const auto& outsideFluxVarsCache = elemFluxVarsCache[flippedScvf]; | |
391 | 8353167 | sumTi += outsideFluxVarsCache.advectionTij(); | |
392 | 8353167 | sumPTi += outsideFluxVarsCache.advectionTij()*outsideVolVars.pressure(phaseIdx); | |
393 | |||
394 | // add outside gravitational contribution | ||
395 | 8353167 | sumPTi += rho*Extrusion::area(fvGeometry, scvf) | |
396 | 8353167 | *outsideVolVars.extrusionFactor() | |
397 | 16706334 | *vtmv(flippedScvf.unitOuterNormal(), outsideVolVars.permeability(), g); | |
398 | } | ||
399 | 2437324 | return sumPTi/sumTi; | |
400 | } | ||
401 | 39453650 | }(); | |
402 | |||
403 | //! precompute alpha := n^T*K*g | ||
404 |
2/2✓ Branch 0 taken 39301590 times.
✓ Branch 1 taken 72052 times.
|
78907300 | const auto alpha_inside = vtmv(scvf.unitOuterNormal(), insideVolVars.permeability(), g)*insideVolVars.extrusionFactor(); |
405 | |||
406 |
2/2✓ Branch 0 taken 39301590 times.
✓ Branch 1 taken 72052 times.
|
39453650 | Scalar flux = tij*(pInside - pOutside) + Extrusion::area(fvGeometry, scvf)*rho*alpha_inside; |
407 | |||
408 | //! On interior faces with one neighbor we have to add K-weighted gravitational contributions | ||
409 |
4/4✓ Branch 0 taken 39301590 times.
✓ Branch 1 taken 72052 times.
✓ Branch 2 taken 36864266 times.
✓ Branch 3 taken 2437324 times.
|
39453650 | if (!scvf.boundary() && scvf.numOutsideScvs() == 1) |
410 | { | ||
411 |
2/2✓ Branch 0 taken 41008 times.
✓ Branch 1 taken 41008 times.
|
36944042 | const auto& outsideScv = fvGeometry.scv(scvf.outsideScvIdx()); |
412 | 36944042 | const auto& outsideScvf = fvGeometry.flipScvf(scvf.index()); | |
413 | 36944042 | const auto outsideK = outsideVolVars.permeability(); | |
414 | 36944042 | const auto outsideTi = computeTpfaTransmissibility(fvGeometry, outsideScvf, outsideScv, outsideK, outsideVolVars.extrusionFactor()); | |
415 | 36944042 | const auto alpha_outside = vtmv(outsideScvf.unitOuterNormal(), outsideK, g)*outsideVolVars.extrusionFactor(); | |
416 | |||
417 | 36944042 | flux -= rho*tij/outsideTi*(alpha_inside + alpha_outside); | |
418 | } | ||
419 | |||
420 | return flux; | ||
421 | } | ||
422 | else | ||
423 | { | ||
424 | // Obtain inside and outside pressures | ||
425 | 26305931 | const auto pInside = insideVolVars.pressure(phaseIdx); | |
426 | 75510977 | const auto pOutside = [&]() | |
427 | { | ||
428 | // Dirichlet boundaries and inner faces with two neighboring elements | ||
429 |
3/4✓ Branch 0 taken 21849410 times.
✓ Branch 1 taken 1019445 times.
✓ Branch 2 taken 30260 times.
✗ Branch 3 not taken.
|
22899115 | if (scvf.numOutsideScvs() <= 1) |
430 | 21879670 | return outsideVolVars.pressure(phaseIdx); | |
431 | |||
432 | // inner faces in networks (general case) | ||
433 | else | ||
434 | { | ||
435 | 1019445 | const auto& insideFluxVarsCache = elemFluxVarsCache[scvf]; | |
436 | 1019445 | Scalar sumTi(insideFluxVarsCache.advectionTij()); | |
437 | 1019445 | Scalar sumPTi(insideFluxVarsCache.advectionTij()*pInside); | |
438 | |||
439 |
2/4✓ Branch 0 taken 3040045 times.
✓ Branch 1 taken 1019445 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
|
4059490 | for (unsigned int i = 0; i < scvf.numOutsideScvs(); ++i) |
440 | { | ||
441 | 3040045 | const auto outsideScvIdx = scvf.outsideScvIdx(i); | |
442 | 3040045 | const auto& flippedScvf = fvGeometry.flipScvf(scvf.index(), i); | |
443 | 3040045 | const auto& outsideVolVars = elemVolVars[outsideScvIdx]; | |
444 | 3040045 | const auto& outsideFluxVarsCache = elemFluxVarsCache[flippedScvf]; | |
445 | 3040045 | sumTi += outsideFluxVarsCache.advectionTij(); | |
446 | 3040045 | sumPTi += outsideFluxVarsCache.advectionTij()*outsideVolVars.pressure(phaseIdx); | |
447 | } | ||
448 | 1019445 | return sumPTi/sumTi; | |
449 | } | ||
450 | 26305931 | }(); | |
451 | |||
452 | // return flux | ||
453 | 26305931 | return fluxVarsCache.advectionTij()*(pInside - pOutside); | |
454 | } | ||
455 | } | ||
456 | |||
457 | // The flux variables cache has to be bound to an element prior to flux calculations | ||
458 | // During the binding, the transmissibility will be computed and stored using the method below. | ||
459 | template<class Problem, class ElementVolumeVariables> | ||
460 |
2/2✓ Branch 0 taken 2557481 times.
✓ Branch 1 taken 2471149 times.
|
10097704 | static Scalar calculateTransmissibility(const Problem& problem, |
461 | const Element& element, | ||
462 | const FVElementGeometry& fvGeometry, | ||
463 | const ElementVolumeVariables& elemVolVars, | ||
464 | const SubControlVolumeFace& scvf) | ||
465 | { | ||
466 | Scalar tij; | ||
467 | |||
468 |
2/2✓ Branch 0 taken 2557481 times.
✓ Branch 1 taken 2471149 times.
|
10097704 | const auto insideScvIdx = scvf.insideScvIdx(); |
469 | 10097704 | const auto& insideScv = fvGeometry.scv(insideScvIdx); | |
470 | 10097704 | const auto& insideVolVars = elemVolVars[insideScvIdx]; | |
471 | |||
472 |
2/2✓ Branch 0 taken 5143674 times.
✓ Branch 1 taken 91376 times.
|
10097704 | const Scalar ti = computeTpfaTransmissibility(fvGeometry, scvf, insideScv, |
473 | 10097704 | getPermeability_(problem, insideVolVars, scvf.ipGlobal()), | |
474 | insideVolVars.extrusionFactor()); | ||
475 | |||
476 | // for the boundary (dirichlet) or at branching points we only need ti | ||
477 |
4/4✓ Branch 0 taken 5143674 times.
✓ Branch 1 taken 91376 times.
✓ Branch 2 taken 8852 times.
✓ Branch 3 taken 5134822 times.
|
10097704 | if (scvf.boundary() || scvf.numOutsideScvs() > 1) |
478 | 183820 | tij = Extrusion::area(fvGeometry, scvf)*ti; | |
479 | |||
480 | // otherwise we compute a tpfa harmonic mean | ||
481 | else | ||
482 | { | ||
483 |
2/2✓ Branch 0 taken 2469709 times.
✓ Branch 1 taken 2469709 times.
|
9913884 | const auto outsideScvIdx = scvf.outsideScvIdx(); |
484 | // as we assemble fluxes from the neighbor to our element the outside index | ||
485 | // refers to the scv of our element, so we use the scv method | ||
486 | 9913884 | const auto& outsideScv = fvGeometry.scv(outsideScvIdx); | |
487 | 9913884 | const auto& outsideVolVars = elemVolVars[outsideScvIdx]; | |
488 |
1/2✓ Branch 0 taken 195404 times.
✗ Branch 1 not taken.
|
9913884 | const Scalar tj = computeTpfaTransmissibility(fvGeometry, fvGeometry.flipScvf(scvf.index()), outsideScv, |
489 | 9913884 | getPermeability_(problem, outsideVolVars, scvf.ipGlobal()), | |
490 | outsideVolVars.extrusionFactor()); | ||
491 | |||
492 | // harmonic mean (check for division by zero!) | ||
493 | // TODO: This could lead to problems!? Is there a better way to do this? | ||
494 |
1/2✓ Branch 0 taken 5134822 times.
✗ Branch 1 not taken.
|
9913884 | if (ti*tj <= 0.0) |
495 | tij = 0; | ||
496 | else | ||
497 | 9913884 | tij = Extrusion::area(fvGeometry, scvf)*(ti * tj)/(ti + tj); | |
498 | } | ||
499 | |||
500 | 10097704 | return tij; | |
501 | } | ||
502 | |||
503 | private: | ||
504 | template<class Problem, class VolumeVariables, | ||
505 | std::enable_if_t<!Problem::SpatialParams::evaluatePermeabilityAtScvfIP(), int> = 0> | ||
506 | static decltype(auto) getPermeability_(const Problem& problem, | ||
507 | const VolumeVariables& volVars, | ||
508 | const GlobalPosition& scvfIpGlobal) | ||
509 |
5/5✓ Branch 0 taken 5103798 times.
✓ Branch 1 taken 89862 times.
✓ Branch 2 taken 194788 times.
✓ Branch 3 taken 39260 times.
✓ Branch 4 taken 1480 times.
|
10368606 | { return volVars.permeability(); } |
510 | |||
511 | template<class Problem, class VolumeVariables, | ||
512 | std::enable_if_t<Problem::SpatialParams::evaluatePermeabilityAtScvfIP(), int> = 0> | ||
513 | 650 | static decltype(auto) getPermeability_(const Problem& problem, | |
514 | const VolumeVariables& volVars, | ||
515 | const GlobalPosition& scvfIpGlobal) | ||
516 |
3/4✓ Branch 0 taken 616 times.
✓ Branch 1 taken 34 times.
✓ Branch 2 taken 616 times.
✗ Branch 3 not taken.
|
1266 | { return problem.spatialParams().permeabilityAtPos(scvfIpGlobal); } |
517 | }; | ||
518 | |||
519 | } // end namespace Dumux | ||
520 | |||
521 | #endif | ||
522 |