GCC Code Coverage Report


Directory: ../../../builds/dumux-repositories/
File: /builds/dumux-repositories/dumux/dumux/multidomain/facet/box/fickslaw.hh
Date: 2024-09-21 20:52:54
Exec Total Coverage
Lines: 33 55 60.0%
Functions: 4 4 100.0%
Branches: 23 106 21.7%

Line Branch Exec Source
1 // -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
2 // vi: set et ts=4 sw=4 sts=4:
3 //
4 // SPDX-FileCopyrightInfo: Copyright © DuMux Project contributors, see AUTHORS.md in root folder
5 // SPDX-License-Identifier: GPL-3.0-or-later
6 //
7 /*!
8 * \file
9 * \ingroup FacetCoupling
10 * \copydoc Dumux::BoxFacetCouplingFicksLaw
11 */
12 #ifndef DUMUX_DISCRETIZATION_BOX_FACET_COUPLING_FICKS_LAW_HH
13 #define DUMUX_DISCRETIZATION_BOX_FACET_COUPLING_FICKS_LAW_HH
14
15 #include <vector>
16 #include <cmath>
17
18 #include <dune/common/exceptions.hh>
19 #include <dune/common/fvector.hh>
20 #include <dune/common/float_cmp.hh>
21
22 #include <dumux/common/parameters.hh>
23 #include <dumux/common/properties.hh>
24
25 #include <dumux/flux/referencesystemformulation.hh>
26 #include <dumux/flux/box/fickslaw.hh>
27 #include <dumux/discretization/method.hh>
28 #include <dumux/discretization/extrusion.hh>
29
30 namespace Dumux {
31
32 /*!
33 * \ingroup FacetCoupling
34 * \brief Ficks's law for the box scheme in the context of coupled models
35 * where coupling occurs across the facets of the bulk domain elements
36 * with a lower-dimensional domain living on these facets.
37 */
38 template<class TypeTag, ReferenceSystemFormulation referenceSystem = ReferenceSystemFormulation::massAveraged>
39 class BoxFacetCouplingFicksLaw
40 : public FicksLawImplementation<TypeTag, DiscretizationMethods::Box, referenceSystem>
41 {
42 using ParentType = FicksLawImplementation<TypeTag, DiscretizationMethods::Box, referenceSystem>;
43
44 using GridGeometry = GetPropType<TypeTag, Properties::GridGeometry>;
45 using FVElementGeometry = typename GridGeometry::LocalView;
46 using SubControlVolumeFace = typename GridGeometry::SubControlVolumeFace;
47 using Extrusion = Extrusion_t<GridGeometry>;
48 using GridView = typename GridGeometry::GridView;
49 using Element = typename GridView::template Codim<0>::Entity;
50
51 static constexpr int dim = GridView::dimension;
52 static constexpr int dimWorld = GridView::dimensionworld;
53
54 using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
55 using ModelTraits = GetPropType<TypeTag, Properties::ModelTraits>;
56 using BalanceEqOpts = GetPropType<TypeTag, Properties::BalanceEqOpts>;
57 static constexpr int numComponents = ModelTraits::numFluidComponents();
58
59 using Scalar = GetPropType<TypeTag, Properties::Scalar>;
60 using ComponentFluxVector = Dune::FieldVector<Scalar, numComponents>;
61
62 public:
63
64 template<class Problem, class ElementVolumeVariables, class ElementFluxVarsCache>
65 7849832 static ComponentFluxVector flux(const Problem& problem,
66 const Element& element,
67 const FVElementGeometry& fvGeometry,
68 const ElementVolumeVariables& elemVolVars,
69 const SubControlVolumeFace& scvf,
70 const int phaseIdx,
71 const ElementFluxVarsCache& elemFluxVarCache)
72 {
73 // if this scvf is not on an interior boundary, use the standard law
74
2/2
✓ Branch 0 taken 7201376 times.
✓ Branch 1 taken 648456 times.
7849832 if (!scvf.interiorBoundary())
75 7201376 return ParentType::flux(problem, element, fvGeometry, elemVolVars, scvf, phaseIdx, elemFluxVarCache);
76
77
5/8
✓ Branch 0 taken 5 times.
✓ Branch 1 taken 648451 times.
✓ Branch 3 taken 5 times.
✗ Branch 4 not taken.
✓ Branch 6 taken 5 times.
✗ Branch 7 not taken.
✓ Branch 9 taken 5 times.
✗ Branch 10 not taken.
648456 static const Scalar xi = getParamFromGroup<Scalar>(problem.paramGroup(), "FacetCoupling.Xi", 1.0);
78
2/4
✗ Branch 0 not taken.
✓ Branch 1 taken 648456 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 648456 times.
648456 if ( !Dune::FloatCmp::eq(xi, 1.0, 1e-6) )
79 DUNE_THROW(Dune::NotImplemented, "Xi != 1.0 cannot be used with the Box-Facet-Coupling scheme");
80
81 // get some references for convenience
82 648456 const auto& fluxVarCache = elemFluxVarCache[scvf];
83 648456 const auto& shapeValues = fluxVarCache.shapeValues();
84 1296912 const auto& insideScv = fvGeometry.scv(scvf.insideScvIdx());
85 648456 const auto& insideVolVars = elemVolVars[insideScv];
86
87 // interpolate density to scvf integration point
88 648456 Scalar rho = 0.0;
89
4/4
✓ Branch 0 taken 2593824 times.
✓ Branch 1 taken 648456 times.
✓ Branch 2 taken 2593824 times.
✓ Branch 3 taken 648456 times.
6484560 for (const auto& scv : scvs(fvGeometry))
90 10375296 rho += massOrMolarDensity(elemVolVars[scv], referenceSystem, phaseIdx)*shapeValues[scv.indexInElement()][0];
91
92 // on interior Neumann boundaries, evaluate the flux using the facet effective diffusion coefficient
93 648456 ComponentFluxVector componentFlux(0.0);
94 648456 const auto bcTypes = problem.interiorBoundaryTypes(element, scvf);
95
2/4
✓ Branch 0 taken 648456 times.
✗ Branch 1 not taken.
✓ Branch 2 taken 648456 times.
✗ Branch 3 not taken.
1296912 if (bcTypes.hasOnlyNeumann())
96 {
97 // compute tpfa flux from integration point to facet centerline
98 1296912 const auto& facetVolVars = problem.couplingManager().getLowDimVolVars(element, scvf);
99
100 using std::sqrt;
101 // If this is a surface grid, use the square root of the facet extrusion factor
102 // as an approximate average distance from scvf ip to facet center
103 using std::sqrt;
104 648456 const auto a = facetVolVars.extrusionFactor();
105 648456 auto preGradX = scvf.unitOuterNormal();
106 648456 preGradX *= dim == dimWorld ? 0.5*a : 0.5*sqrt(a);
107 preGradX /= preGradX.two_norm2();
108
109
2/2
✓ Branch 0 taken 1296912 times.
✓ Branch 1 taken 648456 times.
1945368 for (int compIdx = 0; compIdx < numComponents; compIdx++)
110 {
111 if constexpr (!FluidSystem::isTracerFluidSystem())
112
2/2
✓ Branch 0 taken 648456 times.
✓ Branch 1 taken 648456 times.
1296912 if (compIdx == FluidSystem::getMainComponent(phaseIdx))
113 648456 continue;
114
115 // interpolate mole fraction to scvf integration point
116 648456 Scalar x = 0.0;
117
4/4
✓ Branch 0 taken 2593824 times.
✓ Branch 1 taken 648456 times.
✓ Branch 2 taken 2593824 times.
✓ Branch 3 taken 648456 times.
6484560 for (const auto& scv : scvs(fvGeometry))
118 5187648 x += massOrMoleFraction(elemVolVars[scv], referenceSystem, phaseIdx, compIdx)*shapeValues[scv.indexInElement()][0];
119
120 // compute the diffusive flux by means of a finite difference
121 648456 auto gradX = preGradX;
122 648456 gradX *= (massOrMoleFraction(facetVolVars, referenceSystem, phaseIdx, compIdx) - x);
123
124 648456 componentFlux[compIdx] = -1.0*rho*Extrusion::area(fvGeometry, scvf)
125 648456 *insideVolVars.extrusionFactor()
126 2593824 *vtmv(scvf.unitOuterNormal(),
127 facetVolVars.effectiveDiffusionCoefficient(phaseIdx, phaseIdx, compIdx),
128 gradX);
129
130 if constexpr (!FluidSystem::isTracerFluidSystem())
131 648456 if (BalanceEqOpts::mainComponentIsBalanced(phaseIdx))
132 1945368 componentFlux[FluidSystem::getMainComponent(phaseIdx)] -= componentFlux[compIdx];
133 }
134
135 648456 return componentFlux;
136 }
137
138 // on interior Dirichlet boundaries use the facet mass/mole fraction and evaluate flux
139 else if (bcTypes.hasOnlyDirichlet())
140 {
141 for (int compIdx = 0; compIdx < numComponents; compIdx++)
142 {
143 if constexpr (!FluidSystem::isTracerFluidSystem())
144 if (compIdx == FluidSystem::getMainComponent(phaseIdx))
145 continue;
146
147 // create vector with nodal mole/mass fractions
148 std::vector<Scalar> xFractions(element.subEntities(dim));
149 for (const auto& scv : scvs(fvGeometry))
150 xFractions[scv.localDofIndex()] = massOrMoleFraction(elemVolVars[scv], referenceSystem, phaseIdx, compIdx);
151
152 // substitute with facet mole/mass fractions for those scvs touching this facet
153 for (const auto& scvfJ : scvfs(fvGeometry))
154 if (scvfJ.interiorBoundary() && scvfJ.facetIndexInElement() == scvf.facetIndexInElement())
155 xFractions[ fvGeometry.scv(scvfJ.insideScvIdx()).localDofIndex() ]
156 = massOrMoleFraction(problem.couplingManager().getLowDimVolVars(element, scvfJ), referenceSystem, phaseIdx, compIdx);
157
158 // evaluate gradX at integration point
159 Dune::FieldVector<Scalar, dimWorld> gradX(0.0);
160 for (const auto& scv : scvs(fvGeometry))
161 gradX.axpy(xFractions[scv.localDofIndex()], fluxVarCache.gradN(scv.indexInElement()));
162
163 // apply matrix diffusion coefficient and return the flux
164 componentFlux[compIdx] = -1.0*rho*Extrusion::area(fvGeometry, scvf)
165 *insideVolVars.extrusionFactor()
166 *vtmv(scvf.unitOuterNormal(),
167 insideVolVars.effectiveDiffusionCoefficient(phaseIdx, phaseIdx, compIdx),
168 gradX);
169
170 if constexpr (!FluidSystem::isTracerFluidSystem())
171 if (BalanceEqOpts::mainComponentIsBalanced(phaseIdx))
172 componentFlux[FluidSystem::getMainComponent(phaseIdx)] -= componentFlux[compIdx];
173 }
174
175 return componentFlux;
176 }
177
178 // mixed boundary types are not supported
179 else
180 DUNE_THROW(Dune::NotImplemented, "Mixed boundary types are not supported");
181 }
182
183 // compute transmissibilities ti for analytical jacobians
184 template<class Problem, class ElementVolumeVariables, class FluxVarCache>
185 static std::vector<Scalar> calculateTransmissibilities(const Problem& problem,
186 const Element& element,
187 const FVElementGeometry& fvGeometry,
188 const ElementVolumeVariables& elemVolVars,
189 const SubControlVolumeFace& scvf,
190 const FluxVarCache& fluxVarCache,
191 unsigned int phaseIdx)
192 {
193 DUNE_THROW(Dune::NotImplemented, "transmissibilty computation for BoxFacetCouplingFicksLaw");
194 }
195 };
196
197 } // end namespace Dumux
198
199 #endif
200