GCC Code Coverage Report


Directory: ../../../builds/dumux-repositories/
File: /builds/dumux-repositories/dumux/dumux/freeflow/navierstokes/momentum/fluxvariables.hh
Date: 2024-05-04 19:09:25
Exec Total Coverage
Lines: 113 151 74.8%
Functions: 111 250 44.4%
Branches: 86 208 41.3%

Line Branch Exec Source
1 // -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
2 // vi: set et ts=4 sw=4 sts=4:
3 //
4 // SPDX-FileCopyrightInfo: Copyright © DuMux Project contributors, see AUTHORS.md in root folder
5 // SPDX-License-Identifier: GPL-3.0-or-later
6 //
7 /*!
8 * \file
9 * \ingroup NavierStokesModel
10 * \copydoc Dumux::NavierStokesFluxVariablesImpl
11 */
12 #ifndef DUMUX_NAVIERSTOKES_MOMENTUM_FLUXVARIABLES_HH
13 #define DUMUX_NAVIERSTOKES_MOMENTUM_FLUXVARIABLES_HH
14
15 #include <array>
16
17 #include <dumux/common/numeqvector.hh>
18 #include <dumux/common/math.hh>
19 #include <dumux/common/exceptions.hh>
20 #include <dumux/common/parameters.hh>
21 #include <dumux/common/properties.hh>
22
23 #include <dumux/discretization/extrusion.hh>
24 #include <dumux/discretization/method.hh>
25
26 // #include "staggeredupwindhelper.hh"
27 #include "velocitygradients.hh"
28
29 namespace Dumux {
30
31 /*!
32 * \ingroup NavierStokesModel
33 * \brief The flux variables class for the Navier-Stokes model using the staggered grid discretization.
34 */
35 template<class TypeTag>
36 class NavierStokesMomentumFluxVariables
37 {
38 using GridVariables = GetPropType<TypeTag, Properties::GridVariables>;
39
40 using GridVolumeVariables = typename GridVariables::GridVolumeVariables;
41 using ElementVolumeVariables = typename GridVolumeVariables::LocalView;
42 using VolumeVariables = typename GridVolumeVariables::VolumeVariables;
43
44 using GridFluxVariablesCache = typename GridVariables::GridFluxVariablesCache;
45 using ElementFluxVariablesCache = typename GridFluxVariablesCache::LocalView;
46 using FluxVariablesCache = typename GridFluxVariablesCache::FluxVariablesCache;
47
48 using GridGeometry = typename GridVariables::GridGeometry;
49 using FVElementGeometry = typename GridGeometry::LocalView;
50 using SubControlVolume = typename FVElementGeometry::SubControlVolume;
51 using SubControlVolumeFace = typename FVElementGeometry::SubControlVolumeFace;
52
53 using ElementBoundaryTypes = GetPropType<TypeTag, Properties::ElementBoundaryTypes>;
54
55 using Problem = GetPropType<TypeTag, Properties::Problem>;
56 using GridView = typename GridGeometry::GridView;
57 using Element = typename GridView::template Codim<0>::Entity;
58 using Scalar = GetPropType<TypeTag, Properties::Scalar>;
59 using ModelTraits = GetPropType<TypeTag, Properties::ModelTraits>;
60 using Indices = typename ModelTraits::Indices;
61 using VelocityGradients = StaggeredVelocityGradients;
62
63 using GlobalPosition = typename Element::Geometry::GlobalCoordinate;
64 using Extrusion = Extrusion_t<GridGeometry>;
65
66 using NumEqVector = Dumux::NumEqVector<GetPropType<TypeTag, Properties::PrimaryVariables>>;
67
68 public:
69
70 279435948 NavierStokesMomentumFluxVariables(const Problem& problem,
71 const Element& element,
72 const FVElementGeometry& fvGeometry,
73 const SubControlVolumeFace& scvFace,
74 const ElementVolumeVariables& elemVolVars,
75 const ElementFluxVariablesCache& elemFluxVarsCache,
76 const ElementBoundaryTypes& elemBcTypes)
77 : problemPtr_(&problem)
78 , elementPtr_(&element)
79 , fvGeometryPtr_(&fvGeometry)
80 , scvFacePtr_(&scvFace)
81 , elemVolVarsPtr_(&elemVolVars)
82 , elemFluxVarsCachePtr_(&elemFluxVarsCache)
83 279435948 , elemBcTypesPtr_(&elemBcTypes)
84 {
85 static_assert(
86 std::decay_t<decltype(problem.dirichlet(element, scvFace))>::size()
87 == static_cast<std::size_t>(GridView::dimension),
88 "Expects problem.dirichlet to return an array with as many entries as dimensions."
89 );
90 }
91
92 const Problem& problem() const
93 { return *problemPtr_; }
94
95 const Element& element() const
96 { return *elementPtr_; }
97
98 const SubControlVolumeFace& scvFace() const
99 { return *scvFacePtr_; }
100
101 const FVElementGeometry& fvGeometry() const
102 { return *fvGeometryPtr_; }
103
104 const ElementVolumeVariables& elemVolVars() const
105 { return *elemVolVarsPtr_; }
106
107 const ElementFluxVariablesCache& elemFluxVarsCache() const
108 { return *elemFluxVarsCachePtr_; }
109
110 const ElementBoundaryTypes& elemBcTypes() const
111 { return *elemBcTypesPtr_; }
112
113 /*!
114 * \brief Returns the diffusive momentum flux due to viscous forces
115 */
116 279435948 NumEqVector advectiveMomentumFlux() const
117 {
118
2/2
✓ Branch 0 taken 83467152 times.
✓ Branch 1 taken 195968796 times.
279435948 if (!this->problem().enableInertiaTerms())
119 83467152 return NumEqVector(0.0);
120
121
2/2
✓ Branch 0 taken 65276866 times.
✓ Branch 1 taken 130691930 times.
195968796 if (this->scvFace().isFrontal())
122 65276866 return frontalAdvectiveMomentumFlux();
123 else
124 130691930 return lateralAdvectiveMomentumFlux();
125 }
126
127 /*!
128 * \brief Returns the diffusive momentum flux due to viscous forces
129 */
130 279435948 NumEqVector diffusiveMomentumFlux() const
131 {
132
2/2
✓ Branch 0 taken 93209932 times.
✓ Branch 1 taken 186226016 times.
279435948 if (this->scvFace().isFrontal())
133 93209932 return frontalDiffusiveMomentumFlux();
134 else
135 186226016 return lateralDiffusiveMomentumFlux();
136 }
137
138 /*!
139 * \brief Returns the frontal part of the momentum flux.
140 * This treats the flux over the staggered face at the center of an element,
141 * parallel to the current scvf where the velocity dof of interest lives.
142 *
143 * \verbatim
144 * scvf
145 * ---------======= == and # staggered half-control-volume
146 * | # | current scv
147 * | # | # staggered face over which fluxes are calculated
148 * vel.Opp |~~> O~~~> x~~~~> vel.Self
149 * | # | x dof position
150 * | # |
151 * --------======== -- element
152 * scvf
153 * O integration point
154 * \endverbatim
155 */
156 93209932 NumEqVector frontalDiffusiveMomentumFlux() const
157 {
158 93209932 const auto& scvf = this->scvFace();
159
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 93209932 times.
93209932 assert(scvf.isFrontal());
160
161
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 93209932 times.
93209932 NumEqVector result(0.0);
162 93209932 const auto& fvGeometry = this->fvGeometry();
163 93209932 const auto& elemVolVars = this->elemVolVars();
164
165
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 93209932 times.
93209932 if (scvf.boundary())
166 return result;
167
168 // get the velocity gradient at the normal face's integration point
169 93209932 const auto velGradII = VelocityGradients::velocityGradII(fvGeometry, scvf, elemVolVars);
170
171
4/4
✓ Branch 0 taken 83 times.
✓ Branch 1 taken 93209849 times.
✓ Branch 3 taken 60 times.
✓ Branch 4 taken 23 times.
93209992 static const bool enableUnsymmetrizedVelocityGradient
172
2/4
✓ Branch 1 taken 60 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 60 times.
✗ Branch 5 not taken.
180 = getParamFromGroup<bool>(this->problem().paramGroup(), "FreeFlow.EnableUnsymmetrizedVelocityGradient", false);
173
4/6
✓ Branch 0 taken 60 times.
✓ Branch 1 taken 93209872 times.
✓ Branch 3 taken 60 times.
✗ Branch 4 not taken.
✓ Branch 5 taken 60 times.
✗ Branch 6 not taken.
93209992 static const Scalar factor = enableUnsymmetrizedVelocityGradient ? 1.0 : 2.0;
174
175 93209932 const auto mu = this->problem().effectiveViscosity(this->element(), this->fvGeometry(), this->scvFace());
176
2/2
✓ Branch 3 taken 104 times.
✓ Branch 4 taken 93209828 times.
279629796 result -= factor * mu * velGradII * Extrusion::area(fvGeometry, scvf) * elemVolVars[scvf.insideScvIdx()].extrusionFactor() * scvf.directionSign();
177
178
6/8
✓ Branch 0 taken 104 times.
✓ Branch 1 taken 93209828 times.
✓ Branch 3 taken 60 times.
✓ Branch 4 taken 44 times.
✓ Branch 6 taken 60 times.
✗ Branch 7 not taken.
✓ Branch 9 taken 60 times.
✗ Branch 10 not taken.
93209932 static const bool enableDilatationTerm = getParamFromGroup<bool>(this->problem().paramGroup(), "FreeFlow.EnableDilatationTerm", false);
179
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 93209932 times.
93209932 if (enableDilatationTerm)
180 {
181 Scalar divergence = velGradII;
182 for (const auto& scv : scvs(fvGeometry))
183 {
184 const auto otherFrontalScvf = *(scvfs(fvGeometry, scv).begin());
185 assert(otherFrontalScvf.isFrontal() && !otherFrontalScvf.boundary());
186 if (otherFrontalScvf.index() != scvf.index())
187 divergence += VelocityGradients::velocityGradII(fvGeometry, otherFrontalScvf, elemVolVars);
188 }
189
190 result += 2.0/3.0 * mu * divergence * scvf.directionSign() * Extrusion::area(fvGeometry, scvf) * elemVolVars[scvf.insideScvIdx()].extrusionFactor();
191 }
192
193 93209932 return result;
194 }
195
196 /*!
197 * \brief Returns the diffusive momentum flux over the staggered face perpendicular to the scvf
198 * where the velocity dof of interest lives (coinciding with the element's scvfs).
199 *
200 * \verbatim
201 * ----------------
202 * | |vel.
203 * | in.norm. |Parallel
204 * | vel. |~~~~>
205 * | ^ | ^ out.norm.vel.
206 * | | | |
207 * scvf ---------#######::::::::: || and # staggered half-control-volume (own element)
208 * | || | curr. ::
209 * | || | scvf :: :: staggered half-control-volume (neighbor element)
210 * | || x~~~~> ::
211 * | || | vel. :: # lateral staggered faces over which fluxes are calculated
212 * scvf | || | Self ::
213 * ---------#######::::::::: x dof position
214 * scvf
215 * -- elements
216 * \endverbatim
217 */
218 186226016 NumEqVector lateralDiffusiveMomentumFlux() const
219 {
220 186226016 const auto& scvf = this->scvFace();
221
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 186226016 times.
186226016 assert(scvf.isLateral());
222
223
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 182152912 times.
186226016 NumEqVector result(0.0);
224 186226016 const auto& fvGeometry = this->fvGeometry();
225 186226016 const auto& elemVolVars = this->elemVolVars();
226 186226016 const auto& problem = this->problem();
227
2/4
✗ Branch 0 not taken.
✓ Branch 1 taken 182152912 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 182152912 times.
372452032 const auto& scv = fvGeometry.scv(scvf.insideScvIdx());
228
229
4/4
✓ Branch 0 taken 81 times.
✓ Branch 1 taken 186225935 times.
✓ Branch 3 taken 59 times.
✓ Branch 4 taken 22 times.
186226075 static const bool enableUnsymmetrizedVelocityGradient
230
2/4
✓ Branch 1 taken 59 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 59 times.
✗ Branch 5 not taken.
177 = getParamFromGroup<bool>(problem.paramGroup(), "FreeFlow.EnableUnsymmetrizedVelocityGradient", false);
231
232 186226016 const auto mu = this->problem().effectiveViscosity(this->element(), this->fvGeometry(), this->scvFace());
233
234 // get the velocity gradient at the lateral face's integration point
235 186226016 const auto gradV = VelocityGradients::velocityGradient(fvGeometry, scvf, elemVolVars, this->elemBcTypes(), false);
236
237 // Consider the shear stress caused by the gradient of the velocities parallel to our face of interest.
238 186226016 GlobalPosition gradVn(0.0);
239 371256136 gradV.mv(scvf.unitOuterNormal(), gradVn);
240
1/2
✓ Branch 0 taken 186226016 times.
✗ Branch 1 not taken.
186226016 const Scalar velocityGrad_ij = gradVn[scv.dofAxis()];
241
1/2
✓ Branch 0 taken 186226016 times.
✗ Branch 1 not taken.
186226016 result -= mu * velocityGrad_ij;
242
243 // Consider the shear stress caused by the gradient of the velocities normal to our face of interest.
244
1/2
✓ Branch 0 taken 186226016 times.
✗ Branch 1 not taken.
186226016 if (!enableUnsymmetrizedVelocityGradient)
245 {
246 186226016 GlobalPosition gradVTransposedN(0.0);
247 371256136 gradV.mtv(scvf.unitOuterNormal(), gradVTransposedN);
248 186226016 const Scalar velocityGrad_ji = gradVTransposedN[scv.dofAxis()];
249 372452032 result -= mu * velocityGrad_ji;
250 }
251
252 // Account for the area of the staggered lateral face.
253 372452032 return result * Extrusion::area(fvGeometry, scvf) * elemVolVars[scvf.insideScvIdx()].extrusionFactor();
254 }
255
256 /*!
257 * \brief Returns the frontal pressure contribution.
258 *
259 * \verbatim
260 *
261 * ---------======= == and # staggered half-control-volume
262 * | # | current scv
263 * | # | # frontal staggered face for which pressure contribution is calculated
264 * | P x
265 * | # | x dof position
266 * | # |
267 * --------======== -- element
268 *
269 * P integration point, pressure DOF lives here
270 * \endverbatim
271 */
272 279435948 NumEqVector pressureContribution() const
273 {
274
2/2
✓ Branch 0 taken 93209932 times.
✓ Branch 1 taken 186226016 times.
279435948 NumEqVector result(0.0);
275 279435948 const auto& scvf = this->scvFace();
276
3/4
✓ Branch 0 taken 93209932 times.
✓ Branch 1 taken 186226016 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 93209932 times.
279435948 if (scvf.isLateral() || scvf.boundary())
277 186226016 return result;
278
279 // The pressure force needs to take the extruded scvf area into account.
280 93209932 const auto pressure = this->problem().pressure(this->element(), this->fvGeometry(), scvf);
281 279629796 result = pressure*Extrusion::area(this->fvGeometry(), scvf)*this->elemVolVars()[scvf.insideScvIdx()].extrusionFactor();
282
283 // The pressure contribution calculated above might have a much larger numerical value compared to the viscous or inertial forces.
284 // This may lead to numerical inaccuracies due to loss of significance (cancellantion) for the final residual value.
285 // In the end, we are only interested in a pressure difference between the two relevant faces so we can
286 // subtract a reference value from the actual pressure contribution. Assuming an axisparallel cartesian grid,
287 // scvf.area() will have the same value at both opposing faces such that the reference pressure contribution
288 // cancels out in the final residual which combines the pressure contribution of two adjacent elements
289 // We explicitly do extrude the area here because that might yield different results in both elements.
290 // The multiplication by scvf.area() aims at having a reference value of the same order of magnitude as the actual pressure contribution.
291 93209932 const auto referencePressure = this->problem().referencePressure(this->element(), this->fvGeometry(), scvf);
292 93209932 result -= referencePressure*scvf.area();
293
294 // Account for the orientation of the face.
295 93209932 result *= scvf.directionSign();
296 93209932 return result;
297 }
298
299 /*!
300 * \brief Returns the frontal part of the momentum flux.
301 * This treats the flux over the staggered face at the center of an element,
302 * parallel to the current scvf where the velocity dof of interest lives.
303 *
304 * \verbatim
305 * scvf
306 * ---------======= == and # staggered half-control-volume
307 * | # | current scv
308 * | # | # staggered face over which fluxes are calculated
309 * vel.Opp |~~> O~~~> x~~~~> vel.Self
310 * | # | x dof position
311 * | # |
312 * --------======== -- element
313 * scvf
314 * O integration point
315 * \endverbatim
316 */
317 65276866 NumEqVector frontalAdvectiveMomentumFlux() const
318 {
319
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 65276866 times.
65276866 NumEqVector flux(0.0);
320 65276866 const auto& scvf = this->scvFace();
321
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 65276866 times.
65276866 assert(scvf.isFrontal());
322
323 65276866 const auto& problem = this->problem();
324 65276866 const auto& elemVolVars = this->elemVolVars();
325 130553732 const auto velocitySelf = elemVolVars[scvf.insideScvIdx()].velocity();
326
0/2
✗ Branch 2 not taken.
✗ Branch 3 not taken.
130553732 const auto velocityOpposite = elemVolVars[scvf.outsideScvIdx()].velocity();
327
328 // Get the average velocity at the center of the element (i.e. the location of the staggered face).
329 65276866 const Scalar transportingVelocity = (velocitySelf + velocityOpposite) * 0.5;
330
0/2
✗ Branch 0 not taken.
✗ Branch 1 not taken.
65276866 const Scalar density = this->problem().density(this->element(), this->fvGeometry(), scvf);
331
2/2
✓ Branch 0 taken 23 times.
✓ Branch 1 taken 65276843 times.
65276866 const bool selfIsUpstream = scvf.directionSign() == sign(transportingVelocity);
332
333 // TODO use higher order helper
334
5/8
✓ Branch 0 taken 23 times.
✓ Branch 1 taken 65276843 times.
✓ Branch 3 taken 23 times.
✗ Branch 4 not taken.
✓ Branch 6 taken 23 times.
✗ Branch 7 not taken.
✓ Branch 9 taken 23 times.
✗ Branch 10 not taken.
65276866 static const auto upwindWeight = getParamFromGroup<Scalar>(problem.paramGroup(), "Flux.UpwindWeight");
335
2/2
✓ Branch 0 taken 29319344 times.
✓ Branch 1 taken 35957522 times.
65276866 const Scalar transportedMomentum = selfIsUpstream ? (upwindWeight * velocitySelf + (1.0 - upwindWeight) * velocityOpposite) * density
336 35957522 : (upwindWeight * velocityOpposite + (1.0 - upwindWeight) * velocitySelf) * density;
337
338 130553732 return transportingVelocity * transportedMomentum * scvf.directionSign() * Extrusion::area(this->fvGeometry(), scvf) * extrusionFactor_(elemVolVars, scvf);
339 }
340
341 /*!
342 * \brief Returns the advective momentum flux over the staggered face perpendicular to the scvf
343 * where the velocity dof of interest lives (coinciding with the element's scvfs).
344 *
345 * \verbatim
346 * ----------------
347 * | inner |
348 * | transp. |
349 * | vel. |~~~~> outer vel.
350 * | ^ |
351 * | | |
352 * ---------######O || and # staggered half-control-volume
353 * | || | scv
354 * | || | # lateral staggered faces over which fluxes are calculated
355 * | || x~~~~> inner vel.
356 * | || | x dof position
357 * | || |
358 * ---------####### -- elements
359 *
360 * O integration point
361 * \endverbatim
362 */
363 130691930 NumEqVector lateralAdvectiveMomentumFlux() const
364 {
365
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 130691930 times.
130691930 NumEqVector flux(0.0);
366 130691930 const auto& scvf = this->scvFace();
367
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 130691930 times.
130691930 assert(scvf.isLateral());
368
369 130691930 const auto& problem = this->problem();
370 130691930 const auto& elemVolVars = this->elemVolVars();
371 130691930 const auto fvGeometry = this->fvGeometry();
372
373 // get the transporting velocity which is perpendicular to our own (inner) velocity
374 261383860 const Scalar transportingVelocity = [&]()
375 {
376 130691930 const auto& orthogonalScvf = fvGeometry.lateralOrthogonalScvf(scvf);
377
2/2
✓ Branch 2 taken 22 times.
✓ Branch 3 taken 130691908 times.
261383860 const Scalar innerTransportingVelocity = elemVolVars[orthogonalScvf.insideScvIdx()].velocity();
378
379
4/6
✓ Branch 0 taken 22 times.
✓ Branch 1 taken 130691908 times.
✓ Branch 3 taken 22 times.
✗ Branch 4 not taken.
✓ Branch 6 taken 22 times.
✗ Branch 7 not taken.
130691930 static const bool useOldScheme = getParam<bool>("FreeFlow.UseOldTransportingVelocity", true); // TODO how to deprecate?
380
381
1/2
✓ Branch 0 taken 130691930 times.
✗ Branch 1 not taken.
130691930 if (useOldScheme)
382 {
383
5/8
✓ Branch 0 taken 1619662 times.
✓ Branch 1 taken 129072268 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 1544510 times.
✗ Branch 4 not taken.
✓ Branch 5 taken 1619662 times.
✗ Branch 6 not taken.
✓ Branch 7 taken 1544510 times.
130691930 if (scvf.boundary() && fvGeometry.scv(scvf.insideScvIdx()).boundary())
384 {
385 if (this->elemBcTypes()[scvf.localIndex()].isDirichlet(scvf.normalAxis()))
386 return problem.dirichlet(this->element(), scvf)[scvf.normalAxis()];
387 }
388 else
389 3775024 return innerTransportingVelocity;
390 }
391
392 // use the Dirichlet velocity as transporting velocity if the lateral face is on a Dirichlet boundary
393 if (scvf.boundary())
394 {
395 if (this->elemBcTypes()[scvf.localIndex()].isDirichlet(scvf.normalAxis()))
396 return 0.5*(problem.dirichlet(this->element(), scvf)[scvf.normalAxis()] + innerTransportingVelocity);
397 }
398
399 if (orthogonalScvf.boundary())
400 {
401 if (this->elemBcTypes()[orthogonalScvf.localIndex()].isDirichlet(scvf.normalAxis()))
402 return 0.5*(problem.dirichlet(this->element(), scvf)[scvf.normalAxis()] + innerTransportingVelocity);
403 else
404 return innerTransportingVelocity; // fallback value, should actually never be called
405 }
406
407 // average the transporting velocity by weighting with the scv volumes
408 const auto insideVolume = fvGeometry.scv(orthogonalScvf.insideScvIdx()).volume();
409 const auto outsideVolume = fvGeometry.scv(orthogonalScvf.outsideScvIdx()).volume();
410 const auto outerTransportingVelocity = elemVolVars[orthogonalScvf.outsideScvIdx()].velocity();
411 return (insideVolume*innerTransportingVelocity + outsideVolume*outerTransportingVelocity) / (insideVolume + outsideVolume);
412 130691930 }();
413
414 130691930 const Scalar transportedMomentum = [&]()
415 {
416
2/4
✗ Branch 0 not taken.
✓ Branch 1 taken 126916906 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 126916906 times.
261383860 const auto& insideScv = fvGeometry.scv(scvf.insideScvIdx());
417
418 269922118 auto getDirichletMomentumFlux = [&]()
419 {
420
0/8
✗ Branch 3 not taken.
✗ Branch 4 not taken.
✗ Branch 5 not taken.
✗ Branch 6 not taken.
✗ Branch 7 not taken.
✗ Branch 8 not taken.
✗ Branch 10 not taken.
✗ Branch 11 not taken.
2342718 return problem.dirichlet(this->element(), scvf)[insideScv.dofAxis()] * this->problem().density(this->element(), insideScv);
421 };
422
423 // use the Dirichlet velocity as for transported momentum if the lateral face is on a Dirichlet boundary
424 130691930 if (scvf.boundary())
425 {
426
1/2
✗ Branch 1 not taken.
✓ Branch 2 taken 1619662 times.
1619662 if (!this->elemBcTypes()[scvf.localIndex()].isDirichlet(insideScv.dofAxis()))
427 DUNE_THROW(Dune::InvalidStateException, "Neither Dirichlet nor Neumann BC set at " << scvf.ipGlobal());
428
429 1619662 return getDirichletMomentumFlux();
430 }
431 else
432 {
433
2/3
✗ Branch 0 not taken.
✓ Branch 1 taken 127956616 times.
✓ Branch 2 taken 1115652 times.
129072268 if (fvGeometry.scvfIntegrationPointInConcaveCorner(scvf))
434 {
435 // TODO: we could put this into an assert, as the construction of outsideScvfWithSameIntegrationPoint is quite expensive
436 15488 const auto& outsideScvfWithSameIntegrationPoint = fvGeometry.outsideScvfWithSameIntegrationPoint(scvf);
437
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 15488 times.
15488 if (!this->problem().boundaryTypes(this->element(), outsideScvfWithSameIntegrationPoint).isDirichlet(insideScv.dofAxis()))
438 DUNE_THROW(Dune::InvalidStateException, "Neither Dirichlet nor Neumann BC set at " << outsideScvfWithSameIntegrationPoint.ipGlobal());
439
440 15488 return getDirichletMomentumFlux();
441 }
442 }
443
444 129056780 const bool selfIsUpstream = scvf.directionSign() == sign(transportingVelocity);
445
446 258113560 const auto innerVelocity = elemVolVars[scvf.insideScvIdx()].velocity();
447
0/2
✗ Branch 2 not taken.
✗ Branch 3 not taken.
258113560 const auto outerVelocity = elemVolVars[scvf.outsideScvIdx()].velocity();
448
449 387170340 const auto rho = this->problem().insideAndOutsideDensity(this->element(), fvGeometry, scvf);
450
451 129056780 const auto insideMomentum = innerVelocity * rho.first;
452 129056780 const auto outsideMomentum = outerVelocity * rho.second;
453
454 // TODO use higher order helper
455
5/8
✓ Branch 0 taken 22 times.
✓ Branch 1 taken 129056758 times.
✓ Branch 3 taken 22 times.
✗ Branch 4 not taken.
✓ Branch 6 taken 22 times.
✗ Branch 7 not taken.
✓ Branch 9 taken 22 times.
✗ Branch 10 not taken.
129056780 static const auto upwindWeight = getParamFromGroup<Scalar>(problem.paramGroup(), "Flux.UpwindWeight");
456
457
2/2
✓ Branch 0 taken 57225834 times.
✓ Branch 1 taken 71830946 times.
129056780 return selfIsUpstream ? (upwindWeight * insideMomentum + (1.0 - upwindWeight) * outsideMomentum)
458 71830946 : (upwindWeight * outsideMomentum + (1.0 - upwindWeight) * insideMomentum);
459
2/5
✗ Branch 0 not taken.
✓ Branch 1 taken 1619662 times.
✓ Branch 2 taken 129072268 times.
✗ Branch 3 not taken.
✗ Branch 4 not taken.
390456128 }();
460
461 261383860 return transportingVelocity * transportedMomentum * scvf.directionSign() * Extrusion::area(fvGeometry, scvf) * extrusionFactor_(elemVolVars, scvf);
462 }
463
464 private:
465
466 template<class ElementVolumeVariables, class SubControlVolumeFace>
467 Scalar extrusionFactor_(const ElementVolumeVariables& elemVolVars, const SubControlVolumeFace& scvf) const
468 {
469 const auto& insideVolVars = elemVolVars[scvf.insideScvIdx()];
470 const auto& outsideVolVars = elemVolVars[scvf.outsideScvIdx()];
471 return harmonicMean(insideVolVars.extrusionFactor(), outsideVolVars.extrusionFactor());
472 }
473
474
475 const Problem* problemPtr_; //!< Pointer to the problem
476 const Element* elementPtr_; //!< Pointer to the element at hand
477 const FVElementGeometry* fvGeometryPtr_; //!< Pointer to the current FVElementGeometry
478 const SubControlVolumeFace* scvFacePtr_; //!< Pointer to the sub control volume face for which the flux variables are created
479 const ElementVolumeVariables* elemVolVarsPtr_; //!< Pointer to the current element volume variables
480 const ElementFluxVariablesCache* elemFluxVarsCachePtr_; //!< Pointer to the current element flux variables cache
481 const ElementBoundaryTypes* elemBcTypesPtr_; //!< Pointer to element boundary types
482 };
483
484 } // end namespace Dumux
485
486 #endif // DUMUX_NAVIERSTOKES_STAGGERED_FLUXVARIABLES_HH
487