GCC Code Coverage Report


Directory: ../../../builds/dumux-repositories/
File: /builds/dumux-repositories/dumux/dumux/flux/cctpfa/fourierslaw.hh
Date: 2024-09-21 20:52:54
Exec Total Coverage
Lines: 24 41 58.5%
Functions: 62 151 41.1%
Branches: 22 34 64.7%

Line Branch Exec Source
1 // -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
2 // vi: set et ts=4 sw=4 sts=4:
3 //
4 // SPDX-FileCopyrightInfo: Copyright © DuMux Project contributors, see AUTHORS.md in root folder
5 // SPDX-License-Identifier: GPL-3.0-or-later
6 //
7 /*!
8 * \file
9 * \ingroup CCTpfaFlux
10 * \brief Fourier's law for cell-centered finite volume schemes with two-point flux approximation
11 */
12 #ifndef DUMUX_DISCRETIZATION_CC_TPFA_FOURIERS_LAW_HH
13 #define DUMUX_DISCRETIZATION_CC_TPFA_FOURIERS_LAW_HH
14
15 #include <dumux/common/parameters.hh>
16 #include <dumux/common/properties.hh>
17
18 #include <dumux/discretization/method.hh>
19 #include <dumux/discretization/extrusion.hh>
20 #include <dumux/discretization/cellcentered/tpfa/computetransmissibility.hh>
21
22 namespace Dumux {
23
24 // forward declaration
25 template<class TypeTag, class DiscretizationMethod>
26 class FouriersLawImplementation;
27
28 /*!
29 * \ingroup CCTpfaFlux
30 * \brief Fourier's law for cell-centered finite volume schemes with two-point flux approximation
31 */
32 template <class TypeTag>
33 class FouriersLawImplementation<TypeTag, DiscretizationMethods::CCTpfa>
34 {
35 using Implementation = FouriersLawImplementation<TypeTag, DiscretizationMethods::CCTpfa>;
36 using Scalar = GetPropType<TypeTag, Properties::Scalar>;
37 using Problem = GetPropType<TypeTag, Properties::Problem>;
38 using GridGeometry = GetPropType<TypeTag, Properties::GridGeometry>;
39 using FVElementGeometry = typename GridGeometry::LocalView;
40 using SubControlVolumeFace = typename GridGeometry::SubControlVolumeFace;
41 using Extrusion = Extrusion_t<GridGeometry>;
42 using GridView = typename GridGeometry::GridView;
43 using ElementVolumeVariables = typename GetPropType<TypeTag, Properties::GridVolumeVariables>::LocalView;
44 using VolumeVariables = typename ElementVolumeVariables::VolumeVariables;
45 using Element = typename GridView::template Codim<0>::Entity;
46 using GridFluxVariablesCache = GetPropType<TypeTag, Properties::GridFluxVariablesCache>;
47 using ElementFluxVarsCache = typename GridFluxVariablesCache::LocalView;
48 using FluxVariablesCache = typename GridFluxVariablesCache::FluxVariablesCache;
49
50 static const int dim = GridView::dimension;
51 static const int dimWorld = GridView::dimensionworld;
52
53 //! Class that fills the cache corresponding to tpfa Fick's Law
54 class TpfaFouriersLawCacheFiller
55 {
56 public:
57 //! Function to fill a TpfaFicksLawCache of a given scvf
58 //! This interface has to be met by any diffusion-related cache filler class
59 template<class FluxVariablesCacheFiller>
60 static void fill(FluxVariablesCache& scvfFluxVarsCache,
61 const Problem& problem,
62 const Element& element,
63 const FVElementGeometry& fvGeometry,
64 const ElementVolumeVariables& elemVolVars,
65 const SubControlVolumeFace& scvf,
66 const FluxVariablesCacheFiller& fluxVarsCacheFiller)
67 {
68 143414696 scvfFluxVarsCache.updateHeatConduction(problem, element, fvGeometry, elemVolVars, scvf);
69 }
70 };
71
72 //! Class that caches the transmissibility
73 class TpfaFouriersLawCache
74 {
75 public:
76 using Filler = TpfaFouriersLawCacheFiller;
77
78 void updateHeatConduction(const Problem& problem,
79 const Element& element,
80 const FVElementGeometry& fvGeometry,
81 const ElementVolumeVariables& elemVolVars,
82 const SubControlVolumeFace &scvf)
83 {
84 68323276 tij_ = Implementation::calculateTransmissibility(problem, element, fvGeometry, elemVolVars, scvf);
85 }
86
87 const Scalar& heatConductionTij() const
88 { return tij_; }
89
90 private:
91 Scalar tij_;
92 };
93
94 public:
95 using DiscretizationMethod = DiscretizationMethods::CCTpfa;
96 //! state the discretization method this implementation belongs to
97 static constexpr DiscretizationMethod discMethod{};
98
99 //! export the type for the corresponding cache
100 using Cache = TpfaFouriersLawCache;
101
102 /*!
103 * \brief Returns the heat flux within the porous medium
104 * (in J/s) across the given sub-control volume face.
105 * \note This law assumes thermal equilibrium between the fluid
106 * and solid phases, and uses an effective thermal conductivity
107 * for the overall aggregate.
108 * This overload allows to explicitly specify the inside and outside volume variables
109 * which can be useful to evaluate conductive fluxes at boundaries with given outside values.
110 * This only works if scvf.numOutsideScv() == 1.
111 *
112 */
113 static Scalar flux(const Problem& problem,
114 const Element& element,
115 const FVElementGeometry& fvGeometry,
116 const VolumeVariables& insideVolVars,
117 const VolumeVariables& outsideVolVars,
118 const SubControlVolumeFace& scvf,
119 const ElementFluxVarsCache& elemFluxVarsCache)
120 {
121 if constexpr (isMixedDimensional_)
122 if (scvf.numOutsideScv() != 1)
123 DUNE_THROW(Dune::Exception, "This flux overload requires scvf.numOutsideScv() == 1");
124
125 // heat conductivities are always solution dependent (?)
126 Scalar tij = elemFluxVarsCache[scvf].heatConductionTij();
127
128 // get the inside/outside temperatures
129 const auto tInside = insideVolVars.temperature();
130 const auto tOutside = outsideVolVars.temperature();
131
132 return tij*(tInside - tOutside);
133 }
134
135 /*!
136 * \brief Returns the heat flux within the porous medium
137 * (in J/s) across the given sub-control volume face.
138 * \note This law assumes thermal equilibrium between the fluid
139 * and solid phases, and uses an effective thermal conductivity
140 * for the overall aggregate.
141 */
142 73923861 static Scalar flux(const Problem& problem,
143 const Element& element,
144 const FVElementGeometry& fvGeometry,
145 const ElementVolumeVariables& elemVolVars,
146 const SubControlVolumeFace& scvf,
147 const ElementFluxVarsCache& elemFluxVarsCache)
148 {
149 // heat conductivities are always solution dependent (?)
150 73923861 Scalar tij = elemFluxVarsCache[scvf].heatConductionTij();
151
152 // get the inside/outside temperatures
153
1/2
✓ Branch 2 taken 71478741 times.
✗ Branch 3 not taken.
147847722 const auto tInside = elemVolVars[scvf.insideScvIdx()].temperature();
154
2/4
✓ Branch 0 taken 71478741 times.
✗ Branch 1 not taken.
✓ Branch 2 taken 71478741 times.
✗ Branch 3 not taken.
147847722 const auto tOutside = scvf.numOutsideScvs() == 1 ? elemVolVars[scvf.outsideScvIdx()].temperature()
155 : branchingFacetTemperature_(problem, element, fvGeometry, elemVolVars, elemFluxVarsCache, scvf, tInside, tij);
156
157 73923861 return tij*(tInside - tOutside);
158 }
159
160 //! Compute transmissibilities
161 74955124 static Scalar calculateTransmissibility(const Problem& problem,
162 const Element& element,
163 const FVElementGeometry& fvGeometry,
164 const ElementVolumeVariables& elemVolVars,
165 const SubControlVolumeFace& scvf)
166 {
167 Scalar tij;
168
169
2/2
✓ Branch 0 taken 28681176 times.
✓ Branch 1 taken 26831068 times.
74955124 const auto insideScvIdx = scvf.insideScvIdx();
170
2/2
✓ Branch 0 taken 28681176 times.
✓ Branch 1 taken 26831068 times.
74955124 const auto& insideScv = fvGeometry.scv(insideScvIdx);
171 74955124 const auto& insideVolVars = elemVolVars[insideScvIdx];
172
173
2/2
✓ Branch 0 taken 124504 times.
✓ Branch 1 taken 788 times.
74955124 const auto insideLambda = insideVolVars.effectiveThermalConductivity();
174
2/2
✓ Branch 0 taken 124504 times.
✓ Branch 1 taken 788 times.
74955124 const Scalar ti = computeTpfaTransmissibility(fvGeometry, scvf, insideScv, insideLambda, insideVolVars.extrusionFactor());
175
176 // for the boundary (dirichlet) or at branching points we only need ti
177
4/6
✓ Branch 0 taken 69468074 times.
✓ Branch 1 taken 2156546 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 69468074 times.
✗ Branch 4 not taken.
✓ Branch 5 taken 69468074 times.
74955124 if (scvf.boundary() || scvf.numOutsideScvs() > 1)
178 {
179 4431892 tij = Extrusion::area(fvGeometry, scvf)*ti;
180 }
181 // otherwise we compute a tpfa harmonic mean
182 else
183 {
184
2/2
✓ Branch 0 taken 26831068 times.
✓ Branch 1 taken 26831068 times.
72739178 const auto outsideScvIdx = scvf.outsideScvIdx();
185
2/2
✓ Branch 0 taken 26831068 times.
✓ Branch 1 taken 26831068 times.
72739178 const auto& outsideScv = fvGeometry.scv(outsideScvIdx);
186 72739178 const auto& outsideVolVars = elemVolVars[outsideScvIdx];
187
188
1/2
✓ Branch 0 taken 124504 times.
✗ Branch 1 not taken.
72739178 const auto outsideLambda = outsideVolVars.effectiveThermalConductivity();
189 Scalar tj;
190 if constexpr (dim == dimWorld)
191 // assume the normal vector from outside is anti parallel so we save flipping a vector
192
1/2
✓ Branch 0 taken 124504 times.
✗ Branch 1 not taken.
69410874 tj = -1.0*computeTpfaTransmissibility(fvGeometry, scvf, outsideScv, outsideLambda, outsideVolVars.extrusionFactor());
193 else
194 3328304 tj = computeTpfaTransmissibility(fvGeometry, fvGeometry.flipScvf(scvf.index()), outsideScv, outsideLambda, outsideVolVars.extrusionFactor());
195
196 // check for division by zero!
197
1/2
✓ Branch 0 taken 69468074 times.
✗ Branch 1 not taken.
72739178 if (ti*tj <= 0.0)
198 tij = 0;
199 else
200 145478356 tij = Extrusion::area(fvGeometry, scvf)*(ti * tj)/(ti + tj);
201 }
202
203 74955124 return tij;
204 }
205
206 private:
207
208 //! compute the temperature at branching facets for network grids
209 static Scalar branchingFacetTemperature_(const Problem& problem,
210 const Element& element,
211 const FVElementGeometry& fvGeometry,
212 const ElementVolumeVariables& elemVolVars,
213 const ElementFluxVarsCache& elemFluxVarsCache,
214 const SubControlVolumeFace& scvf,
215 Scalar insideTemperature,
216 Scalar insideTi)
217 {
218 Scalar sumTi(insideTi);
219 Scalar sumTempTi(insideTi*insideTemperature);
220
221 for (unsigned int i = 0; i < scvf.numOutsideScvs(); ++i)
222 {
223 const auto outsideScvIdx = scvf.outsideScvIdx(i);
224 const auto& outsideVolVars = elemVolVars[outsideScvIdx];
225 const auto& flippedScvf = fvGeometry.flipScvf(scvf.index(), i);
226 const auto& outsideFluxVarsCache = elemFluxVarsCache[flippedScvf];
227
228 auto outsideTi = outsideFluxVarsCache.heatConductionTij();
229 sumTi += outsideTi;
230 sumTempTi += outsideTi*outsideVolVars.temperature();
231 }
232 return sumTempTi/sumTi;
233 }
234
235 static constexpr bool isMixedDimensional_ = static_cast<int>(GridView::dimension) < static_cast<int>(GridView::dimensionworld);
236 };
237
238 } // end namespace Dumux
239
240 #endif
241