Line | Branch | Exec | Source |
---|---|---|---|
1 | // -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- | ||
2 | // vi: set et ts=4 sw=4 sts=4: | ||
3 | // | ||
4 | // SPDX-FileCopyrightInfo: Copyright © DuMux Project contributors, see AUTHORS.md in root folder | ||
5 | // SPDX-License-Identifier: GPL-3.0-or-later | ||
6 | // | ||
7 | /*! | ||
8 | * \file | ||
9 | * \ingroup CCTpfaFlux | ||
10 | * \brief Fourier's law for cell-centered finite volume schemes with two-point flux approximation | ||
11 | */ | ||
12 | #ifndef DUMUX_DISCRETIZATION_CC_TPFA_FOURIERS_LAW_NONEQUILIBRIUM_HH | ||
13 | #define DUMUX_DISCRETIZATION_CC_TPFA_FOURIERS_LAW_NONEQUILIBRIUM_HH | ||
14 | |||
15 | #include <dumux/common/properties.hh> | ||
16 | #include <dumux/discretization/method.hh> | ||
17 | #include <dumux/discretization/extrusion.hh> | ||
18 | #include <dumux/discretization/cellcentered/tpfa/computetransmissibility.hh> | ||
19 | #include <dumux/flux/fluxvariablescaching.hh> | ||
20 | |||
21 | namespace Dumux { | ||
22 | |||
23 | // forward declaration | ||
24 | template<class TypeTag, class DiscretizationMethod> | ||
25 | class FouriersLawNonEquilibriumImplementation; | ||
26 | |||
27 | /*! | ||
28 | * \ingroup CCTpfaFlux | ||
29 | * \brief Fourier's law for cell-centered finite volume schemes with two-point flux approximation | ||
30 | */ | ||
31 | template <class TypeTag> | ||
32 | class FouriersLawNonEquilibriumImplementation<TypeTag, DiscretizationMethods::CCTpfa> | ||
33 | { | ||
34 | using Implementation = FouriersLawNonEquilibriumImplementation<TypeTag, DiscretizationMethods::CCTpfa>; | ||
35 | using Scalar = GetPropType<TypeTag, Properties::Scalar>; | ||
36 | using Problem = GetPropType<TypeTag, Properties::Problem>; | ||
37 | using GridGeometry = GetPropType<TypeTag, Properties::GridGeometry>; | ||
38 | using FVElementGeometry = typename GridGeometry::LocalView; | ||
39 | using SubControlVolumeFace = typename GridGeometry::SubControlVolumeFace; | ||
40 | using Extrusion = Extrusion_t<GridGeometry>; | ||
41 | using GridView = typename GridGeometry::GridView; | ||
42 | using ElementVolumeVariables = typename GetPropType<TypeTag, Properties::GridVolumeVariables>::LocalView; | ||
43 | using Element = typename GridView::template Codim<0>::Entity; | ||
44 | using ElementFluxVarsCache = typename GetPropType<TypeTag, Properties::GridFluxVariablesCache>::LocalView; | ||
45 | |||
46 | static constexpr int dim = GridView::dimension; | ||
47 | static constexpr int dimWorld = GridView::dimensionworld; | ||
48 | |||
49 | using ModelTraits = GetPropType<TypeTag, Properties::ModelTraits>; | ||
50 | |||
51 | static constexpr auto numEnergyEqSolid = getPropValue<TypeTag, Properties::NumEnergyEqSolid>(); | ||
52 | static constexpr auto numEnergyEqFluid = getPropValue<TypeTag, Properties::NumEnergyEqFluid>(); | ||
53 | static constexpr auto numEnergyEq = numEnergyEqSolid + numEnergyEqFluid; | ||
54 | static constexpr auto sPhaseIdx = ModelTraits::numFluidPhases(); | ||
55 | |||
56 | public: | ||
57 | using DiscretizationMethod = DiscretizationMethods::CCTpfa; | ||
58 | //! state the discretization method this implementation belongs to | ||
59 | static constexpr DiscretizationMethod discMethod{}; | ||
60 | |||
61 | using Cache = FluxVariablesCaching::EmptyHeatConductionCache; | ||
62 | |||
63 | /*! | ||
64 | * \brief Returns the heat flux within a fluid or solid | ||
65 | * phase (in J/s) across the given sub-control volume face. | ||
66 | */ | ||
67 | 1323020 | static Scalar flux(const Problem& problem, | |
68 | const Element& element, | ||
69 | const FVElementGeometry& fvGeometry, | ||
70 | const ElementVolumeVariables& elemVolVars, | ||
71 | const SubControlVolumeFace& scvf, | ||
72 | const int phaseIdx, | ||
73 | const ElementFluxVarsCache& elemFluxVarsCache) | ||
74 | { | ||
75 | 1323020 | Scalar tInside = 0.0; | |
76 | 1323020 | Scalar tOutside = 0.0; | |
77 | // get the inside/outside temperatures | ||
78 |
2/2✓ Branch 0 taken 661510 times.
✓ Branch 1 taken 661510 times.
|
1323020 | if (phaseIdx < numEnergyEqFluid) |
79 | { | ||
80 | 1323020 | tInside += elemVolVars[scvf.insideScvIdx()].temperatureFluid(phaseIdx); | |
81 | 1323020 | tOutside += elemVolVars[scvf.outsideScvIdx()].temperatureFluid(phaseIdx); | |
82 | } | ||
83 | else //temp solid | ||
84 | { | ||
85 | 1323020 | tInside += elemVolVars[scvf.insideScvIdx()].temperatureSolid(); | |
86 | 1323020 | tOutside += elemVolVars[scvf.outsideScvIdx()].temperatureSolid(); | |
87 | } | ||
88 | |||
89 | 1323020 | Scalar tij = calculateTransmissibility(problem, element, fvGeometry, elemVolVars, scvf, phaseIdx); | |
90 | 1323020 | return tij*(tInside - tOutside); | |
91 | } | ||
92 | |||
93 | //! Compute transmissibilities | ||
94 | 1323020 | static Scalar calculateTransmissibility(const Problem& problem, | |
95 | const Element& element, | ||
96 | const FVElementGeometry& fvGeometry, | ||
97 | const ElementVolumeVariables& elemVolVars, | ||
98 | const SubControlVolumeFace& scvf, | ||
99 | const int phaseIdx) | ||
100 | { | ||
101 |
2/2✓ Branch 0 taken 662340 times.
✓ Branch 1 taken 660680 times.
|
1323020 | const auto insideScvIdx = scvf.insideScvIdx(); |
102 |
2/2✓ Branch 0 taken 662340 times.
✓ Branch 1 taken 660680 times.
|
1323020 | const auto& insideScv = fvGeometry.scv(insideScvIdx); |
103 | 1323020 | const auto& insideVolVars = elemVolVars[insideScvIdx]; | |
104 | 1323020 | const auto computeLambda = [&](const auto& v){ | |
105 | if constexpr (numEnergyEq == 1) | ||
106 | return v.effectiveThermalConductivity(); | ||
107 | else if constexpr (numEnergyEqFluid == 1) | ||
108 | return (phaseIdx != sPhaseIdx) | ||
109 |
0/2✗ Branch 0 not taken.
✗ Branch 1 not taken.
|
5288760 | ? v.effectiveFluidThermalConductivity() |
110 | ✗ | : v.effectiveSolidThermalConductivity(); | |
111 | else | ||
112 | return v.effectivePhaseThermalConductivity(phaseIdx); | ||
113 | }; | ||
114 | |||
115 |
2/2✓ Branch 0 taken 661510 times.
✓ Branch 1 taken 661510 times.
|
1323020 | const auto insideLambda = computeLambda(insideVolVars); |
116 | 1323020 | const Scalar ti = computeTpfaTransmissibility(fvGeometry, scvf, insideScv, insideLambda, insideVolVars.extrusionFactor()); | |
117 | |||
118 | // for the boundary (dirichlet) or at branching points we only need ti | ||
119 |
4/6✓ Branch 0 taken 1321360 times.
✓ Branch 1 taken 1660 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 1321360 times.
✗ Branch 4 not taken.
✓ Branch 5 taken 1321360 times.
|
1323020 | if (scvf.boundary() || scvf.numOutsideScvs() > 1) |
120 | 3320 | return Extrusion::area(fvGeometry, scvf)*ti; | |
121 | else // otherwise we compute a tpfa harmonic mean | ||
122 | { | ||
123 |
2/2✓ Branch 0 taken 660680 times.
✓ Branch 1 taken 660680 times.
|
1321360 | const auto outsideScvIdx = scvf.outsideScvIdx(); |
124 |
2/2✓ Branch 0 taken 660680 times.
✓ Branch 1 taken 660680 times.
|
1321360 | const auto& outsideScv = fvGeometry.scv(outsideScvIdx); |
125 | 1321360 | const auto& outsideVolVars = elemVolVars[outsideScvIdx]; | |
126 |
2/2✓ Branch 0 taken 660680 times.
✓ Branch 1 taken 660680 times.
|
1321360 | const auto outsideLambda = computeLambda(outsideVolVars); |
127 | |||
128 | Scalar tj; | ||
129 | if (dim == dimWorld) | ||
130 | // assume the normal vector from outside is anti parallel so we save flipping a vector | ||
131 | 1321360 | tj = -1.0*computeTpfaTransmissibility(fvGeometry, scvf, outsideScv, outsideLambda, outsideVolVars.extrusionFactor()); | |
132 | else | ||
133 | tj = computeTpfaTransmissibility(fvGeometry, fvGeometry.flipScvf(scvf.index()), outsideScv, outsideLambda, outsideVolVars.extrusionFactor()); | ||
134 | |||
135 | // check for division by zero! | ||
136 |
1/2✓ Branch 0 taken 1321360 times.
✗ Branch 1 not taken.
|
1321360 | if (ti*tj <= 0.0) |
137 | return 0.0; | ||
138 | else | ||
139 | 2642720 | return Extrusion::area(fvGeometry, scvf)*(ti * tj)/(ti + tj); | |
140 | } | ||
141 | } | ||
142 | }; | ||
143 | |||
144 | } // end namespace Dumux | ||
145 | |||
146 | #endif | ||
147 |