Line | Branch | Exec | Source |
---|---|---|---|
1 | // -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- | ||
2 | // vi: set et ts=4 sw=4 sts=4: | ||
3 | // | ||
4 | // SPDX-FileCopyrightText: Copyright © DuMux Project contributors, see AUTHORS.md in root folder | ||
5 | // SPDX-License-Identifier: GPL-3.0-or-later | ||
6 | // | ||
7 | /*! | ||
8 | * \file | ||
9 | * \ingroup FrictionLaws | ||
10 | * \brief Implementation of the abstract base class for friction laws. | ||
11 | */ | ||
12 | |||
13 | #ifndef DUMUX_MATERIAL_FLUIDMATRIX_FRICTIONLAW_HH | ||
14 | #define DUMUX_MATERIAL_FLUIDMATRIX_FRICTIONLAW_HH | ||
15 | |||
16 | #include <algorithm> | ||
17 | #include <cmath> | ||
18 | |||
19 | #include <dune/common/fvector.hh> | ||
20 | |||
21 | namespace Dumux { | ||
22 | |||
23 | /*! | ||
24 | * \ingroup FrictionLaws | ||
25 | * \brief Implementation of the abstract base class for friction laws. | ||
26 | * | ||
27 | * A LET mobility model of Lomeland et al. 2005 \cite Lomeland2005 can be used to add an | ||
28 | * artificial water depth to limit the friction for small water depths. | ||
29 | * | ||
30 | * \note Instead of calculating the bed friction term \f$\mathbf{S_f}\f$ | ||
31 | * of the shallow water equations, the implemented friction laws | ||
32 | * calculate the shear stress \f$\tau_{x}\f$ and \f$\tau_{y}\f$. | ||
33 | */ | ||
34 | |||
35 | template <typename VolumeVariables > | ||
36 |
1/6✗ Branch 0 not taken.
✓ Branch 1 taken 7 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
✗ Branch 4 not taken.
✗ Branch 5 not taken.
|
7 | class FrictionLaw |
37 | { | ||
38 | using Scalar = typename VolumeVariables::PrimaryVariables::value_type; | ||
39 | public: | ||
40 | /*! | ||
41 | * \brief Compute the bottom shear stress. | ||
42 | * | ||
43 | * \param volVars Volume variables | ||
44 | * | ||
45 | * Compute the bottom shear stress due to bottom friction. | ||
46 | * The bottom shear stress is a projection of the shear stress tensor onto the river bed. | ||
47 | * It can therefore be represented by a (tangent) vector with two entries. | ||
48 | * | ||
49 | * \return shear stress [N/m^2]. First entry is the x-component, the second the y-component. | ||
50 | */ | ||
51 | virtual Dune::FieldVector<Scalar, 2> bottomShearStress(const VolumeVariables& volVars) const = 0; | ||
52 | |||
53 | /*! | ||
54 | * \brief Limit the friction for small water depth. | ||
55 | * | ||
56 | * Compute a small artificial water depth that is added to the | ||
57 | * actual water depth to avoid extreme friction values which can | ||
58 | * occur for small water depths. | ||
59 | * | ||
60 | * The function is called with a roughness height, which can be | ||
61 | * seen as roughness height of the surface (e.g. grain size). For a | ||
62 | * zero roughnessHeight the artificial water depth will be zero. | ||
63 | * | ||
64 | * A water depth minUpperH (minUpperH = 2 * roughnessHeight) is | ||
65 | * defined for the limiting. Limiting is applied between both | ||
66 | * depths. | ||
67 | * | ||
68 | * ------------------------- minUpperH ----------- | ||
69 | * | ||
70 | * | ||
71 | * | ||
72 | * ------------------------roughnessHeight --------------- | ||
73 | * /\ /\ roughness /grain\ | ||
74 | * -------------------------------bottom ------------------ | ||
75 | * ///////////////////////////////////////////////// | ||
76 | * | ||
77 | * For the limiting the LET model is used, which is usually applied in the | ||
78 | * porous media flow to limit the permeability due to the saturation. It employs | ||
79 | * the three empirical parameters L, E and T, which describe the limiting curve (mobility). | ||
80 | * | ||
81 | * auto mobility = (mobility_max * pow(sw,L))/(pow(sw,L) + E * pow(1.0-sw,T)); | ||
82 | * | ||
83 | * For the limitation of the roughness height L = 0.0, T = 2.0 and E = 1.0 are chosen. | ||
84 | * Therefore the calculation of the mobility is simplified significantly. | ||
85 | * | ||
86 | * \param roughnessHeight roughness height of the representative structure (e.g. largest grain size). | ||
87 | * \param waterDepth water depth. | ||
88 | * \param eps If the roughness height falls below this threshold, this function returns zero. | ||
89 | */ | ||
90 | 2449747 | Scalar limitRoughH(const Scalar roughnessHeight, const Scalar waterDepth, const Scalar eps=1.0e-12) const | |
91 | { | ||
92 | using std::clamp; | ||
93 | |||
94 | // return zero if the roughness depth is near zero | ||
95 |
2/4✓ Branch 0 taken 1071465 times.
✓ Branch 1 taken 1378282 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
|
2449747 | if (roughnessHeight < eps) return 0.0; |
96 | |||
97 | // calculate the artificial water depth | ||
98 | 1071465 | const Scalar mobilityMax = 1.0; //!< maximal mobility | |
99 | |||
100 | 1071465 | const Scalar minUpperH = roughnessHeight * 2.0; | |
101 |
1/4✗ Branch 0 not taken.
✓ Branch 1 taken 1071465 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
|
1071465 | const Scalar sw = clamp(waterDepth * (1.0/minUpperH), 0.0, 1.0); |
102 | 1071465 | const Scalar mobility = mobilityMax /(1.0 + (1.0-sw)*(1.0-sw)); | |
103 | 1071465 | return roughnessHeight * (1.0 - mobility); | |
104 | } | ||
105 | |||
106 | // virtual base class needs a virtual destructor | ||
107 | virtual ~FrictionLaw() = default; | ||
108 | }; | ||
109 | |||
110 | } // end namespace Dumux | ||
111 | |||
112 | #endif | ||
113 |