Line | Branch | Exec | Source |
---|---|---|---|
1 | // -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- | ||
2 | // vi: set et ts=4 sw=4 sts=4: | ||
3 | // | ||
4 | // SPDX-FileCopyrightText: Copyright © DuMux Project contributors, see AUTHORS.md in root folder | ||
5 | // SPDX-License-Identifier: GPL-3.0-or-later | ||
6 | // | ||
7 | /*! | ||
8 | * \file | ||
9 | * \ingroup Assembly | ||
10 | * \brief The element-wise residual for finite volume schemes | ||
11 | */ | ||
12 | #ifndef DUMUX_FV_LOCAL_RESIDUAL_HH | ||
13 | #define DUMUX_FV_LOCAL_RESIDUAL_HH | ||
14 | |||
15 | #include <dune/common/exceptions.hh> | ||
16 | #include <dune/istl/bvector.hh> | ||
17 | |||
18 | #include <dumux/common/properties.hh> | ||
19 | #include <dumux/common/timeloop.hh> | ||
20 | #include <dumux/common/reservedblockvector.hh> | ||
21 | #include <dumux/common/numeqvector.hh> | ||
22 | #include <dumux/discretization/method.hh> | ||
23 | #include <dumux/discretization/extrusion.hh> | ||
24 | |||
25 | namespace Dumux { | ||
26 | |||
27 | /*! | ||
28 | * \ingroup Assembly | ||
29 | * \brief The element-wise residual for finite volume schemes | ||
30 | * \note This class defines the interface used by the assembler using | ||
31 | * static polymorphism. Implementations are specialized for a certain discretization scheme | ||
32 | */ | ||
33 | template<class TypeTag> | ||
34 | class FVLocalResidual | ||
35 | { | ||
36 | using Implementation = GetPropType<TypeTag, Properties::LocalResidual>; | ||
37 | using Problem = GetPropType<TypeTag, Properties::Problem>; | ||
38 | using Scalar = GetPropType<TypeTag, Properties::Scalar>; | ||
39 | using GridView = typename GetPropType<TypeTag, Properties::GridGeometry>::GridView; | ||
40 | using Element = typename GridView::template Codim<0>::Entity; | ||
41 | using FVElementGeometry = typename GetPropType<TypeTag, Properties::GridGeometry>::LocalView; | ||
42 | using GridVariables = GetPropType<TypeTag, Properties::GridVariables>; | ||
43 | using GridGeometry = GetPropType<TypeTag, Properties::GridGeometry>; | ||
44 | using SubControlVolume = typename GridGeometry::SubControlVolume; | ||
45 | using SubControlVolumeFace = typename GridGeometry::SubControlVolumeFace; | ||
46 | using Extrusion = Extrusion_t<GridGeometry>; | ||
47 | using NumEqVector = Dumux::NumEqVector<GetPropType<TypeTag, Properties::PrimaryVariables>>; | ||
48 | using ElementBoundaryTypes = GetPropType<TypeTag, Properties::ElementBoundaryTypes>; | ||
49 | using ElementFluxVariablesCache = typename GetPropType<TypeTag, Properties::GridFluxVariablesCache>::LocalView; | ||
50 | using VolumeVariables = GetPropType<TypeTag, Properties::VolumeVariables>; | ||
51 | using ElementVolumeVariables = typename GetPropType<TypeTag, Properties::GridVolumeVariables>::LocalView; | ||
52 | using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>; | ||
53 | using TimeLoop = TimeLoopBase<Scalar>; | ||
54 | |||
55 | public: | ||
56 | //! the container storing all element residuals | ||
57 | using ElementResidualVector = ReservedBlockVector<NumEqVector, FVElementGeometry::maxNumElementScvs>; | ||
58 | |||
59 | //! the constructor | ||
60 |
7/15✓ Branch 1 taken 52676971 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 23189425 times.
✗ Branch 5 not taken.
✓ Branch 7 taken 1217780 times.
✗ Branch 8 not taken.
✓ Branch 10 taken 150618 times.
✗ Branch 11 not taken.
✓ Branch 13 taken 163489 times.
✗ Branch 14 not taken.
✓ Branch 16 taken 2892000 times.
✗ Branch 17 not taken.
✓ Branch 19 taken 300 times.
✗ Branch 20 not taken.
✗ Branch 6 not taken.
|
86206692 | FVLocalResidual(const Problem* problem, |
61 | const TimeLoop* timeLoop = nullptr) | ||
62 | : problem_(problem) | ||
63 | , timeLoop_(timeLoop) | ||
64 | {} | ||
65 | |||
66 | /*! | ||
67 | * \name User interface | ||
68 | * \note The following methods are usually expensive to evaluate | ||
69 | * They are useful for outputting / postprocessing residual information. | ||
70 | */ | ||
71 | // \{ | ||
72 | |||
73 | /*! | ||
74 | * \brief Compute the storage term for the current solution. | ||
75 | * | ||
76 | * This can be used to figure out how much of each conservation | ||
77 | * quantity is inside the element. | ||
78 | * | ||
79 | * \param problem The problem to solve | ||
80 | * \param element The DUNE Codim<0> entity for which the storage | ||
81 | * term ought to be calculated | ||
82 | * \param gridGeometry The finite-volume grid geometry | ||
83 | * \param gridVariables The grid variables (volume and flux variables) | ||
84 | * \param sol The solution vector | ||
85 | */ | ||
86 | ElementResidualVector evalStorage(const Problem& problem, | ||
87 | const Element &element, | ||
88 | const GridGeometry& gridGeometry, | ||
89 | const GridVariables& gridVariables, | ||
90 | const SolutionVector& sol) const | ||
91 | { | ||
92 | // make sure FVElementGeometry and volume variables are bound to the element | ||
93 | const auto fvGeometry = localView(gridGeometry).bind(element); | ||
94 | const auto elemVolVars = localView(gridVariables.curGridVolVars()).bind(element, fvGeometry, sol); | ||
95 | |||
96 | ElementResidualVector storage(fvGeometry.numScv()); | ||
97 | |||
98 | // calculate the amount of conservation each quantity inside | ||
99 | // all sub control volumes | ||
100 | for (auto&& scv : scvs(fvGeometry)) | ||
101 | { | ||
102 | auto localScvIdx = scv.localDofIndex(); | ||
103 | const auto& volVars = elemVolVars[scv]; | ||
104 | storage[localScvIdx] = asImp().computeStorage(problem, scv, volVars); | ||
105 | storage[localScvIdx] *= Extrusion::volume(fvGeometry, scv) * volVars.extrusionFactor(); | ||
106 | } | ||
107 | |||
108 | return storage; | ||
109 | } | ||
110 | |||
111 | // \} | ||
112 | |||
113 | /*! | ||
114 | * \name Main interface | ||
115 | * \note Methods used by the assembler to compute derivatives and residual | ||
116 | */ | ||
117 | // \{ | ||
118 | |||
119 | /*! | ||
120 | * \brief Compute the storage local residual, i.e. the deviation of the | ||
121 | * storage term from zero for instationary problems. | ||
122 | * | ||
123 | * \param element The DUNE Codim<0> entity for which the residual | ||
124 | * ought to be calculated | ||
125 | * \param fvGeometry The finite-volume geometry of the element | ||
126 | * \param prevElemVolVars The volume averaged variables for all | ||
127 | * sub-control volumes of the element at the previous time level | ||
128 | * \param curElemVolVars The volume averaged variables for all | ||
129 | * sub-control volumes of the element at the current time level | ||
130 | */ | ||
131 | 282819187 | ElementResidualVector evalStorage(const Element& element, | |
132 | const FVElementGeometry& fvGeometry, | ||
133 | const ElementVolumeVariables& prevElemVolVars, | ||
134 | const ElementVolumeVariables& curElemVolVars) const | ||
135 | { | ||
136 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 217339589 times.
|
282819187 | assert(timeLoop_ && "no time loop set for storage term evaluation"); |
137 | |||
138 | // initialize the residual vector for all scvs in this element | ||
139 |
0/2✗ Branch 0 not taken.
✗ Branch 1 not taken.
|
362827217 | ElementResidualVector residual(fvGeometry.numScv()); |
140 | |||
141 | // evaluate the volume terms (storage + source terms) | ||
142 | // forward to the local residual specialized for the discretization methods | ||
143 |
3/3✓ Branch 0 taken 477969245 times.
✓ Branch 1 taken 221420741 times.
✓ Branch 2 taken 1360384 times.
|
860106163 | for (auto&& scv : scvs(fvGeometry)) |
144 | 577286976 | asImp().evalStorage(residual, this->problem(), element, fvGeometry, prevElemVolVars, curElemVolVars, scv); | |
145 | |||
146 | 282819187 | return residual; | |
147 | } | ||
148 | |||
149 | 347967850 | ElementResidualVector evalFluxAndSource(const Element& element, | |
150 | const FVElementGeometry& fvGeometry, | ||
151 | const ElementVolumeVariables& elemVolVars, | ||
152 | const ElementFluxVariablesCache& elemFluxVarsCache, | ||
153 | const ElementBoundaryTypes &bcTypes) const | ||
154 | { | ||
155 | // initialize the residual vector for all scvs in this element | ||
156 | 449438171 | ElementResidualVector residual(fvGeometry.numScv()); | |
157 | |||
158 | // evaluate the volume terms (storage + source terms) | ||
159 | // forward to the local residual specialized for the discretization methods | ||
160 |
3/3✓ Branch 0 taken 562072459 times.
✓ Branch 1 taken 265262355 times.
✓ Branch 2 taken 2756221 times.
|
1076472734 | for (auto&& scv : scvs(fvGeometry)) |
161 | 728504886 | asImp().evalSource(residual, this->problem(), element, fvGeometry, elemVolVars, scv); | |
162 | |||
163 | // forward to the local residual specialized for the discretization methods | ||
164 |
2/2✓ Branch 0 taken 1146707288 times.
✓ Branch 1 taken 256979698 times.
|
1948341802 | for (auto&& scvf : scvfs(fvGeometry)) |
165 | 1600373954 | asImp().evalFlux(residual, this->problem(), element, fvGeometry, elemVolVars, bcTypes, elemFluxVarsCache, scvf); | |
166 | |||
167 | 347967848 | return residual; | |
168 | } | ||
169 | |||
170 | // \} | ||
171 | |||
172 | |||
173 | /*! | ||
174 | * \name Model specific interface | ||
175 | * \note The following method are the model specific implementations of the local residual | ||
176 | */ | ||
177 | // \{ | ||
178 | |||
179 | /*! | ||
180 | * \brief Calculate the source term of the equation | ||
181 | * | ||
182 | * \param problem The problem to solve | ||
183 | * \param scv The sub-control volume over which we integrate the storage term | ||
184 | * \param volVars The volume variables associated with the scv | ||
185 | * \note has to be implemented by the model specific residual class | ||
186 | * | ||
187 | */ | ||
188 | NumEqVector computeStorage(const Problem& problem, | ||
189 | const SubControlVolume& scv, | ||
190 | const VolumeVariables& volVars) const | ||
191 | { | ||
192 | DUNE_THROW(Dune::NotImplemented, "This model does not implement a storage method!"); | ||
193 | } | ||
194 | |||
195 | /*! | ||
196 | * \brief Calculate the source term of the equation | ||
197 | * | ||
198 | * \param problem The problem to solve | ||
199 | * \param element The DUNE Codim<0> entity for which the residual | ||
200 | * ought to be calculated | ||
201 | * \param fvGeometry The finite-volume geometry of the element | ||
202 | * \param elemVolVars The volume variables associated with the element stencil | ||
203 | * \param scv The sub-control volume over which we integrate the source term | ||
204 | * \note This is the default implementation for all models as sources are computed | ||
205 | * in the user interface of the problem | ||
206 | * | ||
207 | */ | ||
208 | 570323170 | NumEqVector computeSource(const Problem& problem, | |
209 | const Element& element, | ||
210 | const FVElementGeometry& fvGeometry, | ||
211 | const ElementVolumeVariables& elemVolVars, | ||
212 | const SubControlVolume &scv) const | ||
213 | { | ||
214 |
2/4✓ Branch 0 taken 1510014 times.
✗ Branch 1 not taken.
✓ Branch 2 taken 3323 times.
✗ Branch 3 not taken.
|
568645265 | NumEqVector source(0.0); |
215 | |||
216 | // add contributions from volume flux sources | ||
217 |
5/8✓ Branch 0 taken 534685655 times.
✓ Branch 1 taken 176063886 times.
✓ Branch 2 taken 9136776 times.
✓ Branch 3 taken 262948 times.
✗ Branch 4 not taken.
✗ Branch 5 not taken.
✓ Branch 6 taken 3323 times.
✗ Branch 7 not taken.
|
1490343368 | source += problem.source(element, fvGeometry, elemVolVars, scv); |
218 | |||
219 | // add contribution from possible point sources | ||
220 |
7/10✓ Branch 0 taken 11983630 times.
✓ Branch 1 taken 494670249 times.
✓ Branch 2 taken 14299350 times.
✓ Branch 3 taken 28212143 times.
✓ Branch 4 taken 3993616 times.
✗ Branch 5 not taken.
✓ Branch 6 taken 570827 times.
✗ Branch 7 not taken.
✗ Branch 8 not taken.
✓ Branch 9 taken 3470 times.
|
570323169 | if (!problem.pointSourceMap().empty()) |
221 |
0/5✗ Branch 3 not taken.
✗ Branch 4 not taken.
✗ Branch 6 not taken.
✗ Branch 7 not taken.
✗ Branch 2 not taken.
|
41215888 | source += problem.scvPointSources(element, fvGeometry, elemVolVars, scv); |
222 | |||
223 | 490627584 | return source; | |
224 | } | ||
225 | |||
226 | /*! | ||
227 | * \brief Calculate the flux term of the equation | ||
228 | * | ||
229 | * \param problem The problem to solve | ||
230 | * \param element The DUNE Codim<0> entity for which the residual | ||
231 | * ought to be calculated | ||
232 | * \param fvGeometry The finite-volume geometry of the element | ||
233 | * \param elemVolVars The volume variables associated with the element stencil | ||
234 | * \param scvf The sub-control volume over which we integrate the flux | ||
235 | * \param elemFluxVarsCache the flux variable caches for the element's flux stencils | ||
236 | * | ||
237 | * \note has to be implemented by the model specific residual class | ||
238 | * | ||
239 | */ | ||
240 | NumEqVector computeFlux(const Problem& problem, | ||
241 | const Element& element, | ||
242 | const FVElementGeometry& fvGeometry, | ||
243 | const ElementVolumeVariables& elemVolVars, | ||
244 | const SubControlVolumeFace& scvf, | ||
245 | const ElementFluxVariablesCache& elemFluxVarsCache) const | ||
246 | { | ||
247 | DUNE_THROW(Dune::NotImplemented, "This model does not implement a flux method!"); | ||
248 | } | ||
249 | |||
250 | // \} | ||
251 | |||
252 | /*! | ||
253 | * \name Discretization specific interface | ||
254 | * \note The following method are the discretization specific wrapper methods | ||
255 | */ | ||
256 | // \{ | ||
257 | |||
258 | /*! | ||
259 | * \brief Compute the storage local residual, i.e. the deviation of the | ||
260 | * storage term from zero for instationary problems. | ||
261 | * | ||
262 | * \param residual The residual vector to fill | ||
263 | * \param problem The problem to solve | ||
264 | * \param element The DUNE Codim<0> entity for which the residual | ||
265 | * ought to be calculated | ||
266 | * \param fvGeometry The finite-volume geometry of the element | ||
267 | * \param prevElemVolVars The volume averaged variables for all | ||
268 | * sub-control volumes of the element at the previous time level | ||
269 | * \param curElemVolVars The volume averaged variables for all | ||
270 | * sub-control volumes of the element at the current time level | ||
271 | * \param scv The sub control volume the storage term is integrated over | ||
272 | */ | ||
273 |
1/2✓ Branch 0 taken 14460000 times.
✗ Branch 1 not taken.
|
194241766 | void evalStorage(ElementResidualVector& residual, |
274 | const Problem& problem, | ||
275 | const Element& element, | ||
276 | const FVElementGeometry& fvGeometry, | ||
277 | const ElementVolumeVariables& prevElemVolVars, | ||
278 | const ElementVolumeVariables& curElemVolVars, | ||
279 | const SubControlVolume& scv) const | ||
280 | { | ||
281 | 194241766 | const auto& curVolVars = curElemVolVars[scv]; | |
282 | 194241766 | const auto& prevVolVars = prevElemVolVars[scv]; | |
283 | |||
284 | // mass balance within the element. this is the | ||
285 | // \f$\frac{m}{\partial t}\f$ term if using implicit or explicit | ||
286 | // euler as time discretization. | ||
287 | // | ||
288 | // TODO: We might need a more explicit way for | ||
289 | // doing the time discretization... | ||
290 | |||
291 | //! Compute storage with the model specific storage residual | ||
292 |
1/2✓ Branch 0 taken 22854035 times.
✗ Branch 1 not taken.
|
194241766 | NumEqVector prevStorage = asImp().computeStorage(problem, scv, prevVolVars); |
293 |
1/2✓ Branch 0 taken 22854035 times.
✗ Branch 1 not taken.
|
194241766 | NumEqVector storage = asImp().computeStorage(problem, scv, curVolVars); |
294 | |||
295 | 194241766 | prevStorage *= prevVolVars.extrusionFactor(); | |
296 |
2/2✓ Branch 0 taken 99245378 times.
✓ Branch 1 taken 41786909 times.
|
451138584 | storage *= curVolVars.extrusionFactor(); |
297 | |||
298 | 194241766 | storage -= prevStorage; | |
299 | 194241766 | storage *= Extrusion::volume(fvGeometry, scv); | |
300 | 194241766 | storage /= timeLoop_->timeStepSize(); | |
301 | |||
302 |
2/2✓ Branch 0 taken 144566561 times.
✓ Branch 1 taken 55906802 times.
|
344860539 | residual[scv.localDofIndex()] += storage; |
303 | 194241766 | } | |
304 | |||
305 | /*! | ||
306 | * \brief Compute the source local residual, i.e. the deviation of the | ||
307 | * source term from zero. | ||
308 | * | ||
309 | * \param residual The residual vector to fill | ||
310 | * \param problem The problem to solve | ||
311 | * \param element The DUNE Codim<0> entity for which the residual | ||
312 | * ought to be calculated | ||
313 | * \param fvGeometry The finite-volume geometry of the element | ||
314 | * \param curElemVolVars The volume averaged variables for all | ||
315 | * sub-control volumes of the element at the current time level | ||
316 | * \param scv The sub control volume the source term is integrated over | ||
317 | */ | ||
318 |
2/2✓ Branch 0 taken 13616464 times.
✓ Branch 1 taken 30147602 times.
|
914410374 | void evalSource(ElementResidualVector& residual, |
319 | const Problem& problem, | ||
320 | const Element& element, | ||
321 | const FVElementGeometry& fvGeometry, | ||
322 | const ElementVolumeVariables& curElemVolVars, | ||
323 | const SubControlVolume& scv) const | ||
324 | { | ||
325 | //! Compute source with the model specific storage residual | ||
326 | 914410374 | const auto& curVolVars = curElemVolVars[scv]; | |
327 |
2/2✓ Branch 0 taken 21006391 times.
✓ Branch 1 taken 58066259 times.
|
914410374 | NumEqVector source = asImp().computeSource(problem, element, fvGeometry, curElemVolVars, scv); |
328 | 914410372 | source *= Extrusion::volume(fvGeometry, scv)*curVolVars.extrusionFactor(); | |
329 | |||
330 | //! subtract source from local rate (sign convention in user interface) | ||
331 |
2/2✓ Branch 0 taken 165638657 times.
✓ Branch 1 taken 66442690 times.
|
1098188325 | residual[scv.localDofIndex()] -= source; |
332 | 914410372 | } | |
333 | |||
334 | /*! | ||
335 | * \brief Compute the flux local residual, i.e. the deviation of the | ||
336 | * flux term from zero. | ||
337 | * \param residual The residual vector to fill | ||
338 | * \param problem The problem to solve | ||
339 | * \param element The DUNE Codim<0> entity for which the residual | ||
340 | * ought to be calculated | ||
341 | * \param fvGeometry The finite-volume geometry of the element | ||
342 | * \param elemVolVars The volume averaged variables for all | ||
343 | * sub-control volumes of the element at the current time level | ||
344 | * \param elemBcTypes the boundary types for the boundary entities of an elements | ||
345 | * \param elemFluxVarsCache The flux variable caches for the element stencil | ||
346 | * \param scvf The sub control volume face the flux term is integrated over | ||
347 | */ | ||
348 | void evalFlux(ElementResidualVector& residual, | ||
349 | const Problem& problem, | ||
350 | const Element& element, | ||
351 | const FVElementGeometry& fvGeometry, | ||
352 | const ElementVolumeVariables& elemVolVars, | ||
353 | const ElementBoundaryTypes& elemBcTypes, | ||
354 | const ElementFluxVariablesCache& elemFluxVarsCache, | ||
355 | const SubControlVolumeFace& scvf) const {} | ||
356 | |||
357 | /*! | ||
358 | * \brief Compute the flux local residual, i.e. the deviation of the | ||
359 | * flux term from zero. | ||
360 | * | ||
361 | * \param problem The problem to solve | ||
362 | * \param element The DUNE Codim<0> entity for which the residual | ||
363 | * ought to be calculated | ||
364 | * \param fvGeometry The finite-volume geometry of the element | ||
365 | * \param elemVolVars The volume averaged variables for all | ||
366 | * sub-control volumes of the element at the current time level | ||
367 | * \param elemFluxVarsCache The flux variable caches for the element stencil | ||
368 | * \param scvf The sub control volume face the flux term is integrated over | ||
369 | */ | ||
370 | NumEqVector evalFlux(const Problem& problem, | ||
371 | const Element& element, | ||
372 | const FVElementGeometry& fvGeometry, | ||
373 | const ElementVolumeVariables& elemVolVars, | ||
374 | const ElementFluxVariablesCache& elemFluxVarsCache, | ||
375 | const SubControlVolumeFace& scvf) const | ||
376 | { | ||
377 | return asImp().evalFlux(problem, element, fvGeometry, elemVolVars, elemFluxVarsCache, scvf); | ||
378 | } | ||
379 | |||
380 | //\} | ||
381 | |||
382 | /*! | ||
383 | * \name Interfaces for analytic Jacobian computation | ||
384 | */ | ||
385 | // \{ | ||
386 | |||
387 | //! Compute the derivative of the storage residual | ||
388 | template<class PartialDerivativeMatrix> | ||
389 | void addStorageDerivatives(PartialDerivativeMatrix& partialDerivatives, | ||
390 | const Problem& problem, | ||
391 | const Element& element, | ||
392 | const FVElementGeometry& fvGeometry, | ||
393 | const VolumeVariables& curVolVars, | ||
394 | const SubControlVolume& scv) const | ||
395 | { | ||
396 | DUNE_THROW(Dune::NotImplemented, "analytic storage derivative"); | ||
397 | } | ||
398 | |||
399 | //! Compute the derivative of the source residual | ||
400 | template<class PartialDerivativeMatrix> | ||
401 | void addSourceDerivatives(PartialDerivativeMatrix& partialDerivatives, | ||
402 | const Problem& problem, | ||
403 | const Element& element, | ||
404 | const FVElementGeometry& fvGeometry, | ||
405 | const VolumeVariables& curVolVars, | ||
406 | const SubControlVolume& scv) const | ||
407 | { | ||
408 | DUNE_THROW(Dune::NotImplemented, "analytic source derivative"); | ||
409 | } | ||
410 | |||
411 | //! Compute the derivative of the flux residual | ||
412 | template<class PartialDerivativeMatrices, class T = TypeTag> | ||
413 | std::enable_if_t<GetPropType<T, Properties::GridGeometry>::discMethod != DiscretizationMethods::box, void> | ||
414 | addFluxDerivatives(PartialDerivativeMatrices& derivativeMatrices, | ||
415 | const Problem& problem, | ||
416 | const Element& element, | ||
417 | const FVElementGeometry& fvGeometry, | ||
418 | const ElementVolumeVariables& curElemVolVars, | ||
419 | const ElementFluxVariablesCache& elemFluxVarsCache, | ||
420 | const SubControlVolumeFace& scvf) const | ||
421 | { | ||
422 | DUNE_THROW(Dune::NotImplemented, "analytic flux derivative for cell-centered models"); | ||
423 | } | ||
424 | |||
425 | //! Compute the derivative of the flux residual for the box method | ||
426 | template<class JacobianMatrix, class T = TypeTag> | ||
427 | std::enable_if_t<GetPropType<T, Properties::GridGeometry>::discMethod == DiscretizationMethods::box, void> | ||
428 | addFluxDerivatives(JacobianMatrix& A, | ||
429 | const Problem& problem, | ||
430 | const Element& element, | ||
431 | const FVElementGeometry& fvGeometry, | ||
432 | const ElementVolumeVariables& curElemVolVars, | ||
433 | const ElementFluxVariablesCache& elemFluxVarsCache, | ||
434 | const SubControlVolumeFace& scvf) const | ||
435 | { | ||
436 | DUNE_THROW(Dune::NotImplemented, "analytic flux derivative for box models"); | ||
437 | } | ||
438 | |||
439 | //! Compute the derivative of the Dirichlet flux residual for cell-centered schemes | ||
440 | template<class PartialDerivativeMatrices> | ||
441 | void addCCDirichletFluxDerivatives(PartialDerivativeMatrices& derivativeMatrices, | ||
442 | const Problem& problem, | ||
443 | const Element& element, | ||
444 | const FVElementGeometry& fvGeometry, | ||
445 | const ElementVolumeVariables& curElemVolVars, | ||
446 | const ElementFluxVariablesCache& elemFluxVarsCache, | ||
447 | const SubControlVolumeFace& scvf) const | ||
448 | { | ||
449 | DUNE_THROW(Dune::NotImplemented, "analytic Dirichlet flux derivative"); | ||
450 | } | ||
451 | |||
452 | //! Compute the derivative of Robin type boundary conditions ("solution dependent Neumann") | ||
453 | template<class PartialDerivativeMatrices> | ||
454 | void addRobinFluxDerivatives(PartialDerivativeMatrices& derivativeMatrices, | ||
455 | const Problem& problem, | ||
456 | const Element& element, | ||
457 | const FVElementGeometry& fvGeometry, | ||
458 | const ElementVolumeVariables& curElemVolVars, | ||
459 | const ElementFluxVariablesCache& elemFluxVarsCache, | ||
460 | const SubControlVolumeFace& scvf) const | ||
461 | { | ||
462 | DUNE_THROW(Dune::NotImplemented, "analytic Robin flux derivative"); | ||
463 | } | ||
464 | |||
465 | //\} | ||
466 | |||
467 | /*! | ||
468 | * \name Interfaces accessed by local residual implementations | ||
469 | */ | ||
470 | // \{ | ||
471 | |||
472 | //! the problem | ||
473 | 2227218754 | const Problem& problem() const | |
474 |
16/22✓ Branch 7 taken 160540 times.
✗ Branch 8 not taken.
✓ Branch 9 taken 756 times.
✓ Branch 10 taken 1235 times.
✓ Branch 12 taken 153840 times.
✓ Branch 13 taken 3587 times.
✓ Branch 14 taken 194 times.
✗ Branch 15 not taken.
✓ Branch 18 taken 2 times.
✓ Branch 19 taken 1 times.
✓ Branch 22 taken 1 times.
✓ Branch 23 taken 2 times.
✗ Branch 11 not taken.
✓ Branch 16 taken 135 times.
✓ Branch 17 taken 7 times.
✓ Branch 20 taken 11 times.
✓ Branch 21 taken 5 times.
✓ Branch 24 taken 1 times.
✗ Branch 25 not taken.
✓ Branch 4 taken 742 times.
✗ Branch 5 not taken.
✗ Branch 6 not taken.
|
2227658040 | { return *problem_; } |
475 | |||
476 | //! the timeloop for instationary problems | ||
477 | //! calling this for stationary leads to undefined behaviour | ||
478 | 411188968 | const TimeLoop& timeLoop() const | |
479 | 411188968 | { return *timeLoop_; } | |
480 | |||
481 | //! returns true if the residual is stationary | ||
482 | 10089 | bool isStationary() const | |
483 |
2/5✓ Branch 1 taken 10087 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 2 times.
✗ Branch 5 not taken.
✗ Branch 0 not taken.
|
10089 | { return !timeLoop_; } |
484 | |||
485 | // \} | ||
486 | protected: | ||
487 | |||
488 | Implementation &asImp() | ||
489 | { return *static_cast<Implementation*>(this); } | ||
490 | |||
491 | const Implementation &asImp() const | ||
492 | { return *static_cast<const Implementation*>(this); } | ||
493 | |||
494 | private: | ||
495 | const Problem* problem_; //!< the problem we are assembling this residual for | ||
496 | const TimeLoop* timeLoop_; //!< the timeloop for instationary problems | ||
497 | }; | ||
498 | |||
499 | } // end namespace Dumux | ||
500 | |||
501 | #endif | ||
502 |