GCC Code Coverage Report


Directory: ../../../builds/dumux-repositories/
File: /builds/dumux-repositories/dumux/dumux/material/binarycoefficients/h2o_air.hh
Date: 2024-05-04 19:09:25
Exec Total Coverage
Lines: 10 11 90.9%
Functions: 0 1 0.0%
Branches: 5 9 55.6%

Line Branch Exec Source
1 // -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
2 // vi: set et ts=4 sw=4 sts=4:
3 //
4 // SPDX-FileCopyrightInfo: Copyright © DuMux Project contributors, see AUTHORS.md in root folder
5 // SPDX-License-Identifier: GPL-3.0-or-later
6 //
7 /*!
8 * \file
9 * \ingroup Binarycoefficients
10 * \brief Binary coefficients for water and air.
11 */
12 #ifndef DUMUX_BINARY_COEFF_H2O_AIR_HH
13 #define DUMUX_BINARY_COEFF_H2O_AIR_HH
14
15 #include <cmath>
16
17 namespace Dumux {
18 namespace BinaryCoeff {
19
20 /*!
21 * \ingroup Binarycoefficients
22 * \brief Binary coefficients for water and air.
23 */
24 class H2O_Air
25 {
26 public:
27 /*!
28 * \brief Henry coefficient \f$\mathrm{[Pa]}\f$ for air in liquid water.
29 * \param temperature the temperature \f$\mathrm{[K]}\f$
30 *
31 * Henry coefficient See:
32 * Stefan Finsterle (1993, page 33 Formula (2.9)) \cite finsterle1993 <BR>
33 * (fitted to data from Tchobanoglous & Schroeder, 1985 \cite tchobanoglous1985 )
34 */
35 template <class Scalar>
36 static Scalar henry(Scalar temperature)
37 {
38 using std::exp;
39 12940556 Scalar r = (0.8942+1.47*exp(-0.04394*(temperature-273.15)))*1.E-10;
40
41 12940556 return 1./r;
42 }
43
44 /*!
45 * \brief Binary diffusion coefficient \f$\mathrm{[m^2/s]}\f$ for molecular water and air
46 *
47 * \param temperature the temperature \f$\mathrm{[K]}\f$
48 * \param pressure the phase pressure \f$\mathrm{[Pa]}\f$
49 * Vargaftik: Tables on the thermophysical properties of liquids and gases.
50 * John Wiley & Sons, New York, 1975. \cite vargaftik1975 <BR>
51 * Walker, Sabey, Hampton: Studies of heat transfer and water migration in soils.
52 * Dep. of Agricultural and Chemical Engineering, Colorado State University,
53 * Fort Collins, 1981. \cite walker1981
54 */
55 template <class Scalar>
56 static Scalar gasDiffCoeff(Scalar temperature, Scalar pressure)
57 {
58 49199156 const Scalar Theta=1.8;
59 49199156 const Scalar Daw=2.13e-5; /* reference value */
60 49199156 const Scalar pg0=1.e5; /* reference pressure */
61 49199156 const Scalar T0=273.15; /* reference temperature */
62 Scalar Dgaw;
63
64 using std::pow;
65
2/3
✓ Branch 0 taken 3296657 times.
✓ Branch 1 taken 3296658 times.
✗ Branch 2 not taken.
49199156 Dgaw=Daw*(pg0/pressure)*pow((temperature/T0),Theta);
66
67 return Dgaw;
68 }
69
70 /*!
71 * Lacking better data on water-air diffusion in liquids, we use at the
72 * moment the diffusion coefficient of the air's main component nitrogen!!
73 * \brief Diffusion coefficient \f$\mathrm{[m^2/s]}\f$ for molecular nitrogen in liquid water.
74 *
75 * \param temperature the temperature \f$\mathrm{[K]}\f$
76 * \param pressure the phase pressure \f$\mathrm{[Pa]}\f$
77 *
78 * The empirical equations for estimating the diffusion coefficient in
79 * infinite solution which are presented in Reid, 1987 all show a
80 * linear dependency on temperature. We thus simply scale the
81 * experimentally obtained diffusion coefficient of Ferrell and
82 * Himmelblau by the temperature.
83 *
84 * See:
85 * R. Reid et al. (1987, pp. 599) \cite reid1987 <BR>
86 * R. Ferrell, D. Himmelblau (1967, pp. 111-115) \cite ferrell1967
87 */
88 template <class Scalar>
89 static Scalar liquidDiffCoeff(Scalar temperature, Scalar pressure)
90 {
91 32198378 const Scalar Texp = 273.15 + 25; // [K]
92
1/2
✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
32198378 const Scalar Dexp = 2.01e-9; // [m^2/s]
93
2/4
✓ Branch 0 taken 4678725 times.
✓ Branch 1 taken 4678725 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
32198377 return Dexp * temperature/Texp;
94 }
95 };
96
97 } // end namespace BinaryCoeff
98 } // end namespace Dumux
99
100 #endif
101