Line | Branch | Exec | Source |
---|---|---|---|
1 | // -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- | ||
2 | // vi: set et ts=4 sw=4 sts=4: | ||
3 | // | ||
4 | // SPDX-FileCopyrightInfo: Copyright © DuMux Project contributors, see AUTHORS.md in root folder | ||
5 | // SPDX-License-Identifier: GPL-3.0-or-later | ||
6 | // | ||
7 | /*! | ||
8 | * \file | ||
9 | * \ingroup Binarycoefficients | ||
10 | * \brief Binary coefficients for water and nitrogen. | ||
11 | */ | ||
12 | #ifndef DUMUX_BINARY_COEFF_H2O_N2_HH | ||
13 | #define DUMUX_BINARY_COEFF_H2O_N2_HH | ||
14 | |||
15 | #include "henryiapws.hh" | ||
16 | #include "fullermethod.hh" | ||
17 | |||
18 | #include <dumux/material/components/n2.hh> | ||
19 | #include <dumux/material/components/h2o.hh> | ||
20 | |||
21 | namespace Dumux { | ||
22 | namespace BinaryCoeff { | ||
23 | |||
24 | /*! | ||
25 | * \ingroup Binarycoefficients | ||
26 | * \brief Binary coefficients for water and nitrogen. | ||
27 | */ | ||
28 | class H2O_N2 | ||
29 | { | ||
30 | public: | ||
31 | /*! | ||
32 | * \brief Henry coefficient \f$\mathrm{[Pa]}\f$ for molecular nitrogen in liquid water. | ||
33 | * \param temperature the temperature \f$\mathrm{[K]}\f$ | ||
34 | */ | ||
35 | template <class Scalar> | ||
36 | static Scalar henry(Scalar temperature) | ||
37 | { | ||
38 | 17750950 | const Scalar E = 2388.8777; | |
39 | 17750950 | const Scalar F = -14.9593; | |
40 | 17750950 | const Scalar G = 42.0179; | |
41 | 17750950 | const Scalar H = -29.4396; | |
42 | |||
43 | 17750950 | return henryIAPWS(E, F, G, H, temperature); | |
44 | } | ||
45 | |||
46 | /*! | ||
47 | * \brief Binary diffusion coefficient \f$\mathrm{[m^2/s]}\f$ for molecular water and nitrogen. | ||
48 | * | ||
49 | * Uses fullerMethod to determine the diffusion of water in nitrogen. | ||
50 | * \param temperature the temperature \f$\mathrm{[K]}\f$ | ||
51 | * \param pressure the phase pressure \f$\mathrm{[Pa]}\f$ | ||
52 | */ | ||
53 | template <class Scalar> | ||
54 | static Scalar gasDiffCoeff(Scalar temperature, Scalar pressure) | ||
55 | { | ||
56 | using H2O = Dumux::Components::H2O<Scalar>; | ||
57 | using N2 = Dumux::Components::N2<Scalar>; | ||
58 | |||
59 | // atomic diffusion volumes | ||
60 | 19257392 | const Scalar SigmaNu[2] = { 13.1 /* H2O */, 18.5 /* N2 */ }; | |
61 | // molar masses [g/mol] | ||
62 | 19257392 | const Scalar M[2] = { H2O::molarMass()*Scalar(1e3), N2::molarMass()*Scalar(1e3) }; | |
63 | |||
64 | 19257392 | return fullerMethod(M, SigmaNu, temperature, pressure); | |
65 | } | ||
66 | |||
67 | /*! | ||
68 | * \brief Diffusion coefficient \f$\mathrm{[m^2/s]}\f$ for molecular nitrogen in liquid water. | ||
69 | * \param temperature the temperature \f$\mathrm{[K]}\f$ | ||
70 | * \param pressure the phase pressure \f$\mathrm{[Pa]}\f$ | ||
71 | * | ||
72 | * The empirical equations for estimating the diffusion coefficient in | ||
73 | * infinite solution which are presented in Reid, 1987 all show a | ||
74 | * linear dependency on temperature. We thus simply scale the | ||
75 | * experimentally obtained diffusion coefficient of Ferrell and | ||
76 | * Himmelblau by the temperature. | ||
77 | * | ||
78 | * See: | ||
79 | * | ||
80 | * R. Reid et al. (1987, pp. 599) \cite reid1987 <BR> | ||
81 | * | ||
82 | * R. Ferrell, D. Himmelblau (1967, pp. 111-115) \cite ferrell1967 | ||
83 | */ | ||
84 | template <class Scalar> | ||
85 | ✗ | static Scalar liquidDiffCoeff(Scalar temperature, Scalar pressure) | |
86 | { | ||
87 | 34624457 | const Scalar Texp = 273.15 + 25; // [K] | |
88 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
34624457 | const Scalar Dexp = 2.01e-9; // [m^2/s] |
89 | |||
90 | 34624456 | return Dexp * temperature/Texp; | |
91 | } | ||
92 | }; | ||
93 | |||
94 | } // end namespace BinaryCoeff | ||
95 | } // end namespace Dumux | ||
96 | |||
97 | #endif | ||
98 |