Line | Branch | Exec | Source |
---|---|---|---|
1 | // -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- | ||
2 | // vi: set et ts=4 sw=4 sts=4: | ||
3 | // | ||
4 | // SPDX-FileCopyrightText: Copyright © DuMux Project contributors, see AUTHORS.md in root folder | ||
5 | // SPDX-License-Identifier: GPL-3.0-or-later | ||
6 | // | ||
7 | /*! | ||
8 | * \file | ||
9 | * \ingroup Binarycoefficients | ||
10 | * \brief Binary coefficients for water and oxygen. | ||
11 | */ | ||
12 | #ifndef DUMUX_BINARY_COEFF_H2O_O2_HH | ||
13 | #define DUMUX_BINARY_COEFF_H2O_O2_HH | ||
14 | |||
15 | #include <dumux/material/binarycoefficients/henryiapws.hh> | ||
16 | #include <dumux/material/binarycoefficients/fullermethod.hh> | ||
17 | |||
18 | #include <dumux/material/components/o2.hh> | ||
19 | #include <dumux/material/components/h2o.hh> | ||
20 | |||
21 | namespace Dumux::BinaryCoeff { | ||
22 | |||
23 | /*! | ||
24 | * \ingroup Binarycoefficients | ||
25 | * \brief Binary coefficients for water and oxygen. | ||
26 | */ | ||
27 | class H2O_O2 | ||
28 | { | ||
29 | public: | ||
30 | /*! | ||
31 | * \brief Henry coefficient \f$\mathrm{[Pa]}\f$ for molecular oxygen in liquid water. | ||
32 | * \param temperature the temperature \f$\mathrm{[K]}\f$ | ||
33 | */ | ||
34 | template <class Scalar> | ||
35 | 2897487 | static Scalar henry(Scalar temperature) | |
36 | { | ||
37 | 2897487 | const Scalar E = 2305.0674; | |
38 | 2897487 | const Scalar F = -11.3240; | |
39 | 2897487 | const Scalar G = 25.3224; | |
40 | 2897487 | const Scalar H = -15.6449; | |
41 | |||
42 | 2897487 | return henryIAPWS(E, F, G, H, temperature); | |
43 | } | ||
44 | |||
45 | /*! | ||
46 | * \brief Binary diffusion coefficient \f$\mathrm{[m^2/s]}\f$ for molecular water and oxygen. | ||
47 | * | ||
48 | * Uses fullerMethod to determine the diffusion of water in nitrogen. | ||
49 | * \param temperature the temperature \f$\mathrm{[K]}\f$ | ||
50 | * \param pressure the phase pressure \f$\mathrm{[Pa]}\f$ | ||
51 | */ | ||
52 | template <class Scalar> | ||
53 | 2595779 | static Scalar gasDiffCoeff(Scalar temperature, Scalar pressure) | |
54 | { | ||
55 | using H2O = Dumux::Components::H2O<Scalar>; | ||
56 | using O2 = Components::O2<Scalar>; | ||
57 | |||
58 | // atomic diffusion volumes | ||
59 | 2595779 | const Scalar SigmaNu[2] = { 13.1 /* H2O */, 16.3 /* O2 */ }; | |
60 | // molar masses [g/mol] | ||
61 | 2595779 | const Scalar M[2] = { H2O::molarMass()*1e3, O2::molarMass()*1e3 }; | |
62 | |||
63 | 2595779 | return fullerMethod(M, SigmaNu, temperature, pressure); | |
64 | } | ||
65 | |||
66 | /*! | ||
67 | * \brief Diffusion coefficient \f$\mathrm{[m^2/s]}\f$ for molecular oxygen in liquid water. | ||
68 | * \param temperature the temperature \f$\mathrm{[K]}\f$ | ||
69 | * \param pressure the phase pressure \f$\mathrm{[Pa]}\f$ | ||
70 | * | ||
71 | * The empirical equations for estimating the diffusion coefficient in | ||
72 | * infinite solution which are presented in Reid, 1987 all show a | ||
73 | * linear dependency on temperature. We thus simply scale the | ||
74 | * experimentally obtained diffusion coefficient of Ferrell and | ||
75 | * Himmelblau by the temperature. | ||
76 | * | ||
77 | * See: | ||
78 | * | ||
79 | * R. Reid et al. (1987, pp. 599) \cite reid1987 <BR> | ||
80 | * | ||
81 | * R. Ferrell, D. Himmelblau (1967, pp. 111-115) \cite ferrell1967 | ||
82 | */ | ||
83 | template <class Scalar> | ||
84 | 2897489 | static Scalar liquidDiffCoeff(Scalar temperature, Scalar pressure) | |
85 | { | ||
86 | 2897490 | const Scalar Texp = 273.15 + 25; // [K] | |
87 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
2897490 | const Scalar Dexp = 2.2e-9; // [m^2/s] |
88 | 2897489 | return Dexp * temperature/Texp; | |
89 | } | ||
90 | }; | ||
91 | |||
92 | } // end namespace Dumux::BinaryCoeff | ||
93 | |||
94 | #endif | ||
95 |