Line | Branch | Exec | Source |
---|---|---|---|
1 | // -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- | ||
2 | // vi: set et ts=4 sw=4 sts=4: | ||
3 | // | ||
4 | // SPDX-FileCopyrightInfo: Copyright © DuMux Project contributors, see AUTHORS.md in root folder | ||
5 | // SPDX-License-Identifier: GPL-3.0-or-later | ||
6 | // | ||
7 | /*! | ||
8 | * \file | ||
9 | * \ingroup FluidSystems | ||
10 | * \copybrief Dumux::FluidSystems::H2OAirMesitylene | ||
11 | */ | ||
12 | #ifndef DUMUX_H2O_AIR_MESITYLENE_FLUID_SYSTEM_HH | ||
13 | #define DUMUX_H2O_AIR_MESITYLENE_FLUID_SYSTEM_HH | ||
14 | |||
15 | #include <dumux/material/idealgas.hh> | ||
16 | #include <dumux/material/components/air.hh> | ||
17 | #include <dumux/material/components/h2o.hh> | ||
18 | #include <dumux/material/components/tabulatedcomponent.hh> | ||
19 | #include <dumux/material/components/mesitylene.hh> | ||
20 | #include <dumux/material/components/tabulatedcomponent.hh> | ||
21 | |||
22 | #include <dumux/material/binarycoefficients/h2o_air.hh> | ||
23 | #include <dumux/material/binarycoefficients/h2o_mesitylene.hh> | ||
24 | #include <dumux/material/binarycoefficients/air_mesitylene.hh> | ||
25 | |||
26 | #include <dumux/material/fluidsystems/base.hh> | ||
27 | |||
28 | #include <dumux/io/name.hh> | ||
29 | |||
30 | namespace Dumux { | ||
31 | namespace FluidSystems { | ||
32 | |||
33 | /*! | ||
34 | * \ingroup FluidSystems | ||
35 | * \brief A three-phase fluid system featuring gas, NAPL and water as phases and | ||
36 | * distilled water \f$(\mathrm{H_2O})\f$ and air (Pseudo component composed of | ||
37 | * \f$\mathrm{79\%\;N_2}\f$, \f$\mathrm{20\%\;O_2}\f$ and Mesitylene \f$(\mathrm{C_6H_3(CH_3)_3})\f$ as components. | ||
38 | * | ||
39 | * It assumes all phases to be ideal mixtures. | ||
40 | */ | ||
41 | template <class Scalar, | ||
42 | class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> > > | ||
43 | class H2OAirMesitylene | ||
44 | : public Base<Scalar, H2OAirMesitylene<Scalar, H2OType> > | ||
45 | { | ||
46 | using ThisType = H2OAirMesitylene<Scalar, H2OType>; | ||
47 | |||
48 | public: | ||
49 | using NAPL = Components::Mesitylene<Scalar>; | ||
50 | using Air = Dumux::Components::Air<Scalar>; | ||
51 | using H2O = H2OType; | ||
52 | |||
53 | |||
54 | static const int numPhases = 3; | ||
55 | static const int numComponents = 3; | ||
56 | |||
57 | static const int wPhaseIdx = 0; // index of the water phase | ||
58 | static const int nPhaseIdx = 1; // index of the NAPL phase | ||
59 | static const int gPhaseIdx = 2; // index of the gas phase | ||
60 | |||
61 | static const int H2OIdx = 0; | ||
62 | static const int NAPLIdx = 1; | ||
63 | static const int AirIdx = 2; | ||
64 | |||
65 | // export component indices to indicate the main component | ||
66 | // of the corresponding phase at atmospheric pressure 1 bar | ||
67 | // and room temperature 20°C: | ||
68 | static const int wCompIdx = H2OIdx; | ||
69 | static const int nCompIdx = NAPLIdx; | ||
70 | static const int gCompIdx = AirIdx; | ||
71 | |||
72 | /*! | ||
73 | * \brief Initialize the fluid system's static parameters generically | ||
74 | * | ||
75 | * If a tabulated H2O component is used, we do our best to create | ||
76 | * tables that always work. | ||
77 | */ | ||
78 | static void init() | ||
79 | { | ||
80 |
1/4✓ Branch 1 taken 7 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
✗ Branch 4 not taken.
|
7 | init(/*tempMin=*/273.15, |
81 | /*tempMax=*/623.15, | ||
82 | /*numTemp=*/100, | ||
83 | /*pMin=*/0.0, | ||
84 | /*pMax=*/20e6, | ||
85 | /*numP=*/200); | ||
86 | } | ||
87 | |||
88 | /*! | ||
89 | * \brief Initialize the fluid system's static parameters using | ||
90 | * problem specific temperature and pressure ranges | ||
91 | * | ||
92 | * \param tempMin The minimum temperature used for tabulation of water \f$\mathrm{[K]}\f$ | ||
93 | * \param tempMax The maximum temperature used for tabulation of water \f$\mathrm{[K]}\f$ | ||
94 | * \param nTemp The number of ticks on the temperature axis of the table of water | ||
95 | * \param pressMin The minimum pressure used for tabulation of water \f$\mathrm{[Pa]}\f$ | ||
96 | * \param pressMax The maximum pressure used for tabulation of water \f$\mathrm{[Pa]}\f$ | ||
97 | * \param nPress The number of ticks on the pressure axis of the table of water | ||
98 | */ | ||
99 | static void init(Scalar tempMin, Scalar tempMax, unsigned nTemp, | ||
100 | Scalar pressMin, Scalar pressMax, unsigned nPress) | ||
101 | { | ||
102 | if (H2O::isTabulated) | ||
103 | { | ||
104 |
1/2✓ Branch 1 taken 8 times.
✗ Branch 2 not taken.
|
9 | H2O::init(tempMin, tempMax, nTemp, |
105 | pressMin, pressMax, nPress); | ||
106 | } | ||
107 | } | ||
108 | |||
109 | /*! | ||
110 | * \brief Returns whether the fluids are miscible | ||
111 | */ | ||
112 | static constexpr bool isMiscible() | ||
113 | { return true; } | ||
114 | |||
115 | /*! | ||
116 | * \brief Return whether a phase is gaseous | ||
117 | * | ||
118 | * \param phaseIdx The index of the fluid phase to consider | ||
119 | */ | ||
120 | static constexpr bool isGas(int phaseIdx) | ||
121 | { | ||
122 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 3 times.
|
3 | assert(0 <= phaseIdx && phaseIdx < numPhases); |
123 | return phaseIdx == gPhaseIdx; | ||
124 | } | ||
125 | |||
126 | /*! | ||
127 | * \brief Returns true if and only if a fluid phase is assumed to | ||
128 | * be an ideal gas. | ||
129 | * | ||
130 | * \param phaseIdx The index of the fluid phase to consider | ||
131 | */ | ||
132 | ✗ | static bool isIdealGas(int phaseIdx) | |
133 | ✗ | { return phaseIdx == gPhaseIdx && H2O::gasIsIdeal() && Air::gasIsIdeal() && NAPL::gasIsIdeal(); } | |
134 | |||
135 | /*! | ||
136 | * \brief Returns true if and only if a fluid phase is assumed to | ||
137 | * be an ideal mixture. | ||
138 | * | ||
139 | * We define an ideal mixture as a fluid phase where the fugacity | ||
140 | * coefficients of all components times the pressure of the phase | ||
141 | * are independent on the fluid composition. This assumption is true | ||
142 | * if Henry's law and Raoult's law apply. If you are unsure what | ||
143 | * this function should return, it is safe to return false. The | ||
144 | * only damage done will be (slightly) increased computation times | ||
145 | * in some cases. | ||
146 | * | ||
147 | * \param phaseIdx The index of the fluid phase to consider | ||
148 | */ | ||
149 | static bool isIdealMixture(int phaseIdx) | ||
150 | { | ||
151 | ✗ | assert(0 <= phaseIdx && phaseIdx < numPhases); | |
152 | // we assume Henry's and Raoult's laws for the water phase and | ||
153 | // and no interaction between gas molecules of different | ||
154 | // components, so all phases are ideal mixtures! | ||
155 | return true; | ||
156 | } | ||
157 | |||
158 | /*! | ||
159 | * \brief Returns true if and only if a fluid phase is assumed to | ||
160 | * be compressible. | ||
161 | * | ||
162 | * Compressible means that the partial derivative of the density | ||
163 | * to the fluid pressure is always larger than zero. | ||
164 | * | ||
165 | * \param phaseIdx The index of the fluid phase to consider | ||
166 | */ | ||
167 | 3 | static constexpr bool isCompressible(int phaseIdx) | |
168 | { | ||
169 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 3 times.
|
3 | assert(0 <= phaseIdx && phaseIdx < numPhases); |
170 | // gases are always compressible | ||
171 |
2/2✓ Branch 0 taken 2 times.
✓ Branch 1 taken 1 times.
|
3 | if (phaseIdx == gPhaseIdx) |
172 | return true; | ||
173 |
2/2✓ Branch 0 taken 1 times.
✓ Branch 1 taken 1 times.
|
2 | else if (phaseIdx == wPhaseIdx) |
174 | // the water component decides for the water phase... | ||
175 | return H2O::liquidIsCompressible(); | ||
176 | |||
177 | // the NAPL component decides for the napl phase... | ||
178 | 1 | return NAPL::liquidIsCompressible(); | |
179 | } | ||
180 | |||
181 | /*! | ||
182 | * \brief Return the human readable name of a phase (used in indices) | ||
183 | */ | ||
184 | 207 | static std::string phaseName(int phaseIdx) | |
185 | { | ||
186 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 207 times.
|
207 | assert(0 <= phaseIdx && phaseIdx < numPhases); |
187 |
3/4✓ Branch 0 taken 69 times.
✓ Branch 1 taken 69 times.
✓ Branch 2 taken 69 times.
✗ Branch 3 not taken.
|
207 | switch (phaseIdx) |
188 | { | ||
189 | 69 | case wPhaseIdx: return IOName::aqueousPhase(); | |
190 | 69 | case nPhaseIdx: return IOName::naplPhase(); | |
191 | 69 | case gPhaseIdx: return IOName::gaseousPhase(); | |
192 | } | ||
193 | ✗ | DUNE_THROW(Dune::InvalidStateException, "Invalid phase index " << phaseIdx); | |
194 | } | ||
195 | |||
196 | /*! | ||
197 | * \brief Return the human readable name of a component (used in indices) | ||
198 | */ | ||
199 | 39 | static std::string componentName(int compIdx) | |
200 | { | ||
201 |
3/4✓ Branch 0 taken 13 times.
✓ Branch 1 taken 13 times.
✓ Branch 2 taken 13 times.
✗ Branch 3 not taken.
|
39 | switch (compIdx) { |
202 | 13 | case H2OIdx: return H2O::name(); | |
203 | 13 | case AirIdx: return Air::name(); | |
204 | 13 | case NAPLIdx: return NAPL::name(); | |
205 | } | ||
206 | ✗ | DUNE_THROW(Dune::InvalidStateException, "Invalid component index " << compIdx); | |
207 | } | ||
208 | |||
209 | /*! | ||
210 | * \brief Return the molar mass of a component in \f$\mathrm{[kg/mol]}\f$. | ||
211 | * \param compIdx The index of the component | ||
212 | */ | ||
213 |
1/2✓ Branch 0 taken 125485232 times.
✗ Branch 1 not taken.
|
125485232 | static Scalar molarMass(int compIdx) |
214 | { | ||
215 | switch (compIdx) { | ||
216 | case H2OIdx: return H2O::molarMass(); | ||
217 | case AirIdx: return Air::molarMass(); | ||
218 | case NAPLIdx: return NAPL::molarMass(); | ||
219 | } | ||
220 | ✗ | DUNE_THROW(Dune::InvalidStateException, "Invalid component index " << compIdx); | |
221 | } | ||
222 | |||
223 | using Base<Scalar, ThisType>::density; | ||
224 | /*! | ||
225 | * \brief Given a phase's composition, temperature, pressure, and | ||
226 | * the partial pressures of all components, return its | ||
227 | * density \f$\mathrm{[kg/m^3]}\f$. | ||
228 | * | ||
229 | * We apply Eq. (7) | ||
230 | * in Class et al. (2002a) \cite A3:class:2002b <BR> | ||
231 | * for the water density. | ||
232 | * | ||
233 | * \param fluidState The fluid state | ||
234 | * \param phaseIdx The index of the phase | ||
235 | */ | ||
236 | template <class FluidState> | ||
237 | 4895159 | static Scalar density(const FluidState &fluidState, int phaseIdx) | |
238 | { | ||
239 |
2/2✓ Branch 0 taken 2092409 times.
✓ Branch 1 taken 2802750 times.
|
4895159 | if (phaseIdx == wPhaseIdx) { |
240 | // See: Eq. (7) in Class et al. (2002a) | ||
241 | // this assumes each dissolved molecule displaces exactly one | ||
242 | // water molecule in the liquid | ||
243 | 6277225 | return H2O::liquidMolarDensity(fluidState.temperature(phaseIdx), fluidState.pressure(phaseIdx)) | |
244 | 2092409 | * (H2O::molarMass()*fluidState.moleFraction(wPhaseIdx, H2OIdx) | |
245 | 2092409 | + Air::molarMass()*fluidState.moleFraction(wPhaseIdx, AirIdx) | |
246 | 3474477 | + NAPL::molarMass()*fluidState.moleFraction(wPhaseIdx, NAPLIdx)); | |
247 | } | ||
248 |
2/2✓ Branch 0 taken 710341 times.
✓ Branch 1 taken 2092409 times.
|
2802750 | else if (phaseIdx == nPhaseIdx) { |
249 | // assume pure NAPL for the NAPL phase | ||
250 | 2092409 | Scalar pressure = NAPL::liquidIsCompressible()?fluidState.pressure(phaseIdx):1e100; | |
251 | 4184817 | return NAPL::liquidDensity(fluidState.temperature(phaseIdx), pressure); | |
252 | } | ||
253 | |||
254 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 2092409 times.
|
2092409 | assert (phaseIdx == gPhaseIdx); |
255 | 2092409 | Scalar pH2O = | |
256 | 3474477 | fluidState.moleFraction(gPhaseIdx, H2OIdx) * | |
257 | fluidState.pressure(gPhaseIdx); | ||
258 | 2092409 | Scalar pAir = | |
259 | 3474477 | fluidState.moleFraction(gPhaseIdx, AirIdx) * | |
260 | fluidState.pressure(gPhaseIdx); | ||
261 | 2092409 | Scalar pNAPL = | |
262 | 3474477 | fluidState.moleFraction(gPhaseIdx, NAPLIdx) * | |
263 | fluidState.pressure(gPhaseIdx); | ||
264 | 4184817 | return H2O::gasDensity(fluidState.temperature(phaseIdx), pH2O) | |
265 | 4184817 | + Air::gasDensity(fluidState.temperature(phaseIdx), pAir) | |
266 | 5566886 | + NAPL::gasDensity(fluidState.temperature(phaseIdx), pNAPL); | |
267 | } | ||
268 | |||
269 | using Base<Scalar, ThisType>::molarDensity; | ||
270 | //! \copydoc Base<Scalar,ThisType>::molarDensity(const FluidState&,int) | ||
271 | template <class FluidState> | ||
272 | 1382071 | static Scalar molarDensity(const FluidState &fluidState, int phaseIdx) | |
273 | { | ||
274 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1382068 times.
|
4146207 | Scalar temperature = fluidState.temperature(phaseIdx); |
275 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1382068 times.
|
4146207 | Scalar pressure = fluidState.pressure(phaseIdx); |
276 | |||
277 |
2/2✓ Branch 0 taken 1 times.
✓ Branch 1 taken 1382070 times.
|
1382071 | if (phaseIdx == nPhaseIdx) |
278 | { | ||
279 | // assume pure NAPL for the NAPL phase | ||
280 | 1382069 | return NAPL::liquidMolarDensity(temperature, pressure); | |
281 | } | ||
282 |
2/2✓ Branch 0 taken 1 times.
✓ Branch 1 taken 1382069 times.
|
1382070 | else if (phaseIdx == wPhaseIdx) |
283 | { | ||
284 | 1382069 | return H2O::liquidMolarDensity(temperature, pressure); | |
285 | } | ||
286 | else | ||
287 | { | ||
288 | 2764137 | return H2O::gasMolarDensity(temperature, fluidState.partialPressure(gPhaseIdx, H2OIdx)) | |
289 | 2764137 | + NAPL::gasMolarDensity(temperature, fluidState.partialPressure(gPhaseIdx, NAPLIdx)) | |
290 | 4146205 | + Air::gasMolarDensity(temperature, fluidState.partialPressure(gPhaseIdx, AirIdx)); | |
291 | } | ||
292 | } | ||
293 | |||
294 | using Base<Scalar, ThisType>::viscosity; | ||
295 | /*! | ||
296 | * \brief Return the viscosity of a phase \f$\mathrm{[Pa s]}\f$. | ||
297 | * \param fluidState The fluid state | ||
298 | * \param phaseIdx The index of the phase | ||
299 | * \todo Check the parameter phiCAW for the mesitylene case and give a physical meaningful name | ||
300 | */ | ||
301 | template <class FluidState> | ||
302 | 6277227 | static Scalar viscosity(const FluidState &fluidState, | |
303 | int phaseIdx) | ||
304 | { | ||
305 |
2/2✓ Branch 0 taken 2092409 times.
✓ Branch 1 taken 4184818 times.
|
6277227 | if (phaseIdx == wPhaseIdx) { |
306 | // assume pure water viscosity | ||
307 | 6277225 | return H2O::liquidViscosity(fluidState.temperature(phaseIdx), | |
308 | fluidState.pressure(phaseIdx)); | ||
309 | } | ||
310 |
2/2✓ Branch 0 taken 2092409 times.
✓ Branch 1 taken 2092409 times.
|
4184818 | else if (phaseIdx == nPhaseIdx) { |
311 | // assume pure NAPL viscosity | ||
312 | 6277225 | return NAPL::liquidViscosity(fluidState.temperature(phaseIdx), | |
313 | 2092409 | fluidState.pressure(phaseIdx)); | |
314 | } | ||
315 | |||
316 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 2092409 times.
|
2092409 | assert (phaseIdx == gPhaseIdx); |
317 | |||
318 | /* Wilke method. See: | ||
319 | * | ||
320 | * See: R. Reid, et al.: The Properties of Gases and Liquids, | ||
321 | * 4th edition, McGraw-Hill, 1987, 407-410 | ||
322 | * 5th edition, McGraw-Hill, 2001, p. 9.21/22 | ||
323 | * | ||
324 | * in this case, we use a simplified version in order to avoid | ||
325 | * computationally costly evaluation of sqrt and pow functions and | ||
326 | * divisions | ||
327 | * -- compare e.g. with Promo Class p. 32/33 | ||
328 | */ | ||
329 | Scalar muResult; | ||
330 | 6277227 | const Scalar mu[numComponents] = { | |
331 | 6277225 | h2oGasViscosityInMixture(fluidState.temperature(phaseIdx), fluidState.pressure(phaseIdx)), | |
332 | 6277225 | Air::gasViscosity(fluidState.temperature(phaseIdx), fluidState.pressure(phaseIdx)), | |
333 | 8369633 | NAPL::gasViscosity(fluidState.temperature(phaseIdx), NAPL::vaporPressure(fluidState.temperature(phaseIdx))) | |
334 | }; | ||
335 | // molar masses | ||
336 | const Scalar M[numComponents] = { | ||
337 | H2O::molarMass(), | ||
338 | Air::molarMass(), | ||
339 | NAPL::molarMass() | ||
340 | }; | ||
341 | |||
342 | 2802749 | Scalar muAW = mu[AirIdx]*fluidState.moleFraction(gPhaseIdx, AirIdx) | |
343 | 2092409 | + mu[H2OIdx]*fluidState.moleFraction(gPhaseIdx, H2OIdx) | |
344 | 1382069 | / (fluidState.moleFraction(gPhaseIdx, AirIdx) | |
345 | 3474477 | + fluidState.moleFraction(gPhaseIdx, H2OIdx)); | |
346 | 2092409 | Scalar xAW = fluidState.moleFraction(gPhaseIdx, AirIdx) | |
347 | 3474476 | + fluidState.moleFraction(gPhaseIdx, H2OIdx); | |
348 | |||
349 | 2802750 | Scalar MAW = (fluidState.moleFraction(gPhaseIdx, AirIdx)*Air::molarMass() | |
350 | 2092409 | + fluidState.moleFraction(gPhaseIdx, H2OIdx)*H2O::molarMass()) | |
351 | / xAW; | ||
352 | |||
353 | 2092409 | Scalar phiCAW = 0.3; // simplification for this particular system | |
354 | /* actually like this | ||
355 | * using std::sqrt; | ||
356 | * using std::pow; | ||
357 | * Scalar phiCAW = pow(1.+sqrt(mu[NAPLIdx]/muAW)*pow(MAW/M[NAPLIdx],0.25),2) | ||
358 | * / sqrt(8.*(1.+M[NAPLIdx]/MAW)); | ||
359 | */ | ||
360 | 2092409 | Scalar phiAWC = phiCAW * muAW*M[NAPLIdx]/(mu[NAPLIdx]*MAW); | |
361 | |||
362 | 2802749 | muResult = (xAW*muAW)/(xAW+fluidState.moleFraction(gPhaseIdx, NAPLIdx)*phiAWC) | |
363 | 2092409 | + (fluidState.moleFraction(gPhaseIdx, NAPLIdx) * mu[NAPLIdx]) | |
364 | 2092409 | / (fluidState.moleFraction(gPhaseIdx, NAPLIdx) + xAW*phiCAW); | |
365 | 2092409 | return muResult; | |
366 | } | ||
367 | |||
368 | |||
369 | using Base<Scalar, ThisType>::diffusionCoefficient; | ||
370 | /*! | ||
371 | * \brief Given all mole fractions, return the diffusion | ||
372 | * coefficient in \f$\mathrm{[m^2/s]}\f$ of a component in a phase. | ||
373 | * \param fluidState The fluid state | ||
374 | * \param phaseIdx The index of the phase | ||
375 | * \param compIdx The index of the component | ||
376 | */ | ||
377 | template <class FluidState> | ||
378 | 8292417 | static Scalar diffusionCoefficient(const FluidState &fluidState, | |
379 | int phaseIdx, | ||
380 | int compIdx) | ||
381 | { | ||
382 |
3/3✓ Branch 0 taken 2764139 times.
✓ Branch 1 taken 2764139 times.
✓ Branch 2 taken 2764139 times.
|
8292417 | switch (phaseIdx) |
383 | { | ||
384 |
3/4✓ Branch 0 taken 1382069 times.
✓ Branch 1 taken 1382069 times.
✓ Branch 2 taken 1 times.
✗ Branch 3 not taken.
|
2764139 | case gPhaseIdx: |
385 | { | ||
386 | switch (compIdx) | ||
387 | { | ||
388 | 1382069 | case NAPLIdx: | |
389 | { | ||
390 | 4146205 | Scalar diffWC = BinaryCoeff::H2O_Mesitylene::gasDiffCoeff(fluidState.temperature(phaseIdx), fluidState.pressure(phaseIdx)); | |
391 | 4146205 | Scalar diffAW = BinaryCoeff::H2O_Air::gasDiffCoeff(fluidState.temperature(phaseIdx), fluidState.pressure(phaseIdx)); | |
392 | 1382069 | const Scalar xga = fluidState.moleFraction(gPhaseIdx, AirIdx); | |
393 | 1382069 | const Scalar xgw = fluidState.moleFraction(gPhaseIdx, H2OIdx); | |
394 | 1382069 | const Scalar xgc = fluidState.moleFraction(gPhaseIdx, NAPLIdx); | |
395 | 1382069 | return (1.- xgw)/(xga/diffAW + xgc/diffWC); | |
396 | } | ||
397 | 1382069 | case H2OIdx: | |
398 | { | ||
399 | 4146205 | Scalar diffAC = BinaryCoeff::Air_Mesitylene::gasDiffCoeff(fluidState.temperature(phaseIdx), fluidState.pressure(phaseIdx)); | |
400 | 4146205 | Scalar diffWC = BinaryCoeff::H2O_Mesitylene::gasDiffCoeff(fluidState.temperature(phaseIdx), fluidState.pressure(phaseIdx)); | |
401 | 1382069 | const Scalar xga = fluidState.moleFraction(gPhaseIdx, AirIdx); | |
402 | 1382069 | const Scalar xgw = fluidState.moleFraction(gPhaseIdx, H2OIdx); | |
403 | 1382069 | const Scalar xgc = fluidState.moleFraction(gPhaseIdx, NAPLIdx); | |
404 | 1382069 | return (1.- xgc)/(xgw/diffWC + xga/diffAC); | |
405 | } | ||
406 | 1 | case AirIdx: | |
407 |
7/16✓ Branch 2 taken 1 times.
✗ Branch 3 not taken.
✓ Branch 11 taken 1 times.
✗ Branch 12 not taken.
✓ Branch 15 taken 1 times.
✗ Branch 16 not taken.
✓ Branch 18 taken 1 times.
✗ Branch 19 not taken.
✓ Branch 21 taken 1 times.
✗ Branch 22 not taken.
✓ Branch 23 taken 1 times.
✗ Branch 24 not taken.
✗ Branch 26 not taken.
✓ Branch 27 taken 1 times.
✗ Branch 29 not taken.
✗ Branch 30 not taken.
|
11 | DUNE_THROW(Dune::InvalidStateException, "Diffusivity of Air in the gas phase is constraint by sum of diffusive fluxes = 0 !"); |
408 | } | ||
409 | } | ||
410 | case wPhaseIdx: | ||
411 | { | ||
412 |
4/8✓ Branch 0 taken 1382068 times.
✓ Branch 1 taken 1382068 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
✓ Branch 4 taken 1382068 times.
✓ Branch 5 taken 1382068 times.
✗ Branch 6 not taken.
✗ Branch 7 not taken.
|
5528275 | Scalar diffACl = BinaryCoeff::Air_Mesitylene::liquidDiffCoeff(fluidState.temperature(phaseIdx), fluidState.pressure(phaseIdx)); |
413 |
4/8✓ Branch 0 taken 1382068 times.
✓ Branch 1 taken 1382068 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
✓ Branch 4 taken 1382068 times.
✓ Branch 5 taken 1382068 times.
✗ Branch 6 not taken.
✗ Branch 7 not taken.
|
5528275 | Scalar diffWCl = BinaryCoeff::H2O_Mesitylene::liquidDiffCoeff(fluidState.temperature(phaseIdx), fluidState.pressure(phaseIdx)); |
414 |
6/12✓ Branch 0 taken 1382068 times.
✓ Branch 1 taken 1382068 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
✓ Branch 4 taken 1382068 times.
✓ Branch 5 taken 1382068 times.
✗ Branch 6 not taken.
✗ Branch 7 not taken.
✓ Branch 8 taken 1382068 times.
✓ Branch 9 taken 1382068 times.
✗ Branch 10 not taken.
✗ Branch 11 not taken.
|
8292411 | Scalar diffAWl = BinaryCoeff::H2O_Air::liquidDiffCoeff(fluidState.temperature(phaseIdx), fluidState.pressure(phaseIdx)); |
415 | |||
416 |
2/4✓ Branch 0 taken 1382068 times.
✓ Branch 1 taken 1382068 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
|
2764139 | Scalar xwa = fluidState.moleFraction(wPhaseIdx, AirIdx); |
417 |
2/4✓ Branch 0 taken 1382068 times.
✓ Branch 1 taken 1382068 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
|
2764139 | Scalar xww = fluidState.moleFraction(wPhaseIdx, H2OIdx); |
418 |
6/8✓ Branch 0 taken 1382068 times.
✓ Branch 1 taken 1382069 times.
✓ Branch 2 taken 1 times.
✓ Branch 3 taken 1 times.
✓ Branch 4 taken 1382068 times.
✓ Branch 5 taken 1382068 times.
✗ Branch 6 not taken.
✗ Branch 7 not taken.
|
5528275 | Scalar xwc = fluidState.moleFraction(wPhaseIdx, NAPLIdx); |
419 | |||
420 | switch (compIdx) | ||
421 | { | ||
422 | 1382069 | case NAPLIdx: | |
423 | 1382069 | return (1.- xww)/(xwa/diffAWl + xwc/diffWCl); | |
424 | 1382069 | case AirIdx: | |
425 | 1382069 | return (1.- xwc)/(xww/diffWCl + xwa/diffACl); | |
426 | 1 | case H2OIdx: | |
427 |
7/16✓ Branch 2 taken 1 times.
✗ Branch 3 not taken.
✓ Branch 11 taken 1 times.
✗ Branch 12 not taken.
✓ Branch 15 taken 1 times.
✗ Branch 16 not taken.
✓ Branch 18 taken 1 times.
✗ Branch 19 not taken.
✓ Branch 21 taken 1 times.
✗ Branch 22 not taken.
✓ Branch 23 taken 1 times.
✗ Branch 24 not taken.
✗ Branch 26 not taken.
✓ Branch 27 taken 1 times.
✗ Branch 29 not taken.
✗ Branch 30 not taken.
|
11 | DUNE_THROW(Dune::InvalidStateException, |
428 | "Diffusivity of water in the water phase " | ||
429 | "is constraint by sum of diffusive fluxes = 0 !\n"); | ||
430 | } | ||
431 | } | ||
432 | case nPhaseIdx: | ||
433 | { | ||
434 | return 0; | ||
435 | } | ||
436 | } | ||
437 | return 0; | ||
438 | } | ||
439 | |||
440 | using Base<Scalar, ThisType>::binaryDiffusionCoefficient; | ||
441 | //! \copydoc Base<Scalar,ThisType>::binaryDiffusionCoefficient(const FluidState&,int,int,int) | ||
442 | template <class FluidState> | ||
443 | 27 | static Scalar binaryDiffusionCoefficient(const FluidState &fluidState, | |
444 | int phaseIdx, | ||
445 | int compIIdx, | ||
446 | int compJIdx) | ||
447 | { | ||
448 |
7/16✓ Branch 2 taken 27 times.
✗ Branch 3 not taken.
✓ Branch 11 taken 27 times.
✗ Branch 12 not taken.
✓ Branch 15 taken 27 times.
✗ Branch 16 not taken.
✓ Branch 18 taken 27 times.
✗ Branch 19 not taken.
✓ Branch 21 taken 27 times.
✗ Branch 22 not taken.
✓ Branch 23 taken 27 times.
✗ Branch 24 not taken.
✗ Branch 26 not taken.
✓ Branch 27 taken 27 times.
✗ Branch 29 not taken.
✗ Branch 30 not taken.
|
297 | DUNE_THROW(Dune::NotImplemented, "FluidSystems::H2OAirMesitylene::binaryDiffusionCoefficient()"); |
449 | } | ||
450 | |||
451 | using Base<Scalar, ThisType>::fugacityCoefficient; | ||
452 | /*! | ||
453 | * \brief Returns the fugacity coefficient \f$\mathrm{[-]}\f$ of a component in a | ||
454 | * phase. | ||
455 | * | ||
456 | * In this case, things are actually pretty simple. We have an ideal | ||
457 | * solution. Thus, the fugacity coefficient is 1 in the gas phase | ||
458 | * (fugacity equals the partial pressure of the component in the gas phase) | ||
459 | * respectively in the liquid phases it is the Henry coefficients divided | ||
460 | * by pressure. | ||
461 | * \param fluidState The fluid state | ||
462 | * \param phaseIdx The index of the phase | ||
463 | * \param compIdx The index of the component | ||
464 | */ | ||
465 | template <class FluidState> | ||
466 | 16790701 | static Scalar fugacityCoefficient(const FluidState &fluidState, | |
467 | int phaseIdx, | ||
468 | int compIdx) | ||
469 | { | ||
470 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 16790701 times.
|
16790701 | assert(0 <= phaseIdx && phaseIdx < numPhases); |
471 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 16790701 times.
|
16790701 | assert(0 <= compIdx && compIdx < numComponents); |
472 | |||
473 |
2/2✓ Branch 0 taken 7116216 times.
✓ Branch 1 taken 9674476 times.
|
16790701 | Scalar T = fluidState.temperature(phaseIdx); |
474 |
2/2✓ Branch 0 taken 7116216 times.
✓ Branch 1 taken 9674476 times.
|
16790701 | Scalar p = fluidState.pressure(phaseIdx); |
475 | |||
476 |
2/2✓ Branch 0 taken 7116219 times.
✓ Branch 1 taken 9674482 times.
|
16790701 | if (phaseIdx == wPhaseIdx) { |
477 |
2/2✓ Branch 0 taken 1587945 times.
✓ Branch 1 taken 5528274 times.
|
7116219 | if (compIdx == H2OIdx) |
478 | 1587945 | return H2O::vaporPressure(T)/p; | |
479 |
2/2✓ Branch 0 taken 2764137 times.
✓ Branch 1 taken 2764137 times.
|
5528274 | else if (compIdx == AirIdx) |
480 | 5528274 | return BinaryCoeff::H2O_Air::henry(T)/p; | |
481 | else if (compIdx == NAPLIdx) | ||
482 | 5528274 | return BinaryCoeff::H2O_Mesitylene::henry(T)/p; | |
483 | } | ||
484 | |||
485 | // for the NAPL phase, we assume currently that nothing is | ||
486 | // dissolved. this means that the affinity of the NAPL | ||
487 | // component to the NAPL phase is much higher than for the | ||
488 | // other components, i.e. the fugacity coefficient is much | ||
489 | // smaller. | ||
490 |
2/2✓ Branch 0 taken 5528275 times.
✓ Branch 1 taken 4146207 times.
|
9674482 | if (phaseIdx == nPhaseIdx) { |
491 |
2/2✓ Branch 0 taken 2764138 times.
✓ Branch 1 taken 2764137 times.
|
5528275 | Scalar phiNapl = NAPL::vaporPressure(T)/p; |
492 |
2/2✓ Branch 0 taken 2764138 times.
✓ Branch 1 taken 2764137 times.
|
5528275 | if (compIdx == NAPLIdx) |
493 | return phiNapl; | ||
494 |
2/2✓ Branch 0 taken 1382069 times.
✓ Branch 1 taken 1382069 times.
|
2764138 | else if (compIdx == AirIdx) |
495 | 1382069 | return 1e6*phiNapl; | |
496 |
1/2✓ Branch 0 taken 1382069 times.
✗ Branch 1 not taken.
|
1382069 | else if (compIdx == H2OIdx) |
497 | 1382069 | return 1e6*phiNapl; | |
498 | } | ||
499 | |||
500 | // for the gas phase, assume an ideal gas when it comes to | ||
501 | // fugacity (-> fugacity == partial pressure) | ||
502 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 4146207 times.
|
4146207 | assert(phaseIdx == gPhaseIdx); |
503 | return 1.0; | ||
504 | } | ||
505 | |||
506 | template <class FluidState> | ||
507 | static Scalar kelvinVaporPressure(const FluidState &fluidState, | ||
508 | const int phaseIdx, | ||
509 | const int compIdx) | ||
510 | { | ||
511 | DUNE_THROW(Dune::NotImplemented, "FluidSystems::H2OAirMesitylene::kelvinVaporPressure()"); | ||
512 | } | ||
513 | |||
514 | using Base<Scalar, ThisType>::enthalpy; | ||
515 | /*! | ||
516 | * \brief Given all mole fractions in a phase, return the specific | ||
517 | * phase enthalpy \f$\mathrm{[J/kg]}\f$. | ||
518 | * \param fluidState The fluid state | ||
519 | * \param phaseIdx The index of the phase | ||
520 | * | ||
521 | * \note This system neglects the contribution of gas-molecules in the liquid phase. | ||
522 | * This contribution is probably not big. Somebody would have to find out the enthalpy of solution for this system. ... | ||
523 | */ | ||
524 | template <class FluidState> | ||
525 | 5668602 | static Scalar enthalpy(const FluidState &fluidState, | |
526 | int phaseIdx) | ||
527 | { | ||
528 |
2/2✓ Branch 0 taken 1889534 times.
✓ Branch 1 taken 3779068 times.
|
5668602 | if (phaseIdx == wPhaseIdx) { |
529 | 5668600 | return H2O::liquidEnthalpy(fluidState.temperature(phaseIdx), fluidState.pressure(phaseIdx)); | |
530 | } | ||
531 |
2/2✓ Branch 0 taken 1889534 times.
✓ Branch 1 taken 1889534 times.
|
3779068 | else if (phaseIdx == nPhaseIdx) { |
532 | 5668600 | return NAPL::liquidEnthalpy(fluidState.temperature(phaseIdx), fluidState.pressure(phaseIdx)); | |
533 | } | ||
534 |
1/2✓ Branch 0 taken 1889534 times.
✗ Branch 1 not taken.
|
1889534 | else if (phaseIdx == gPhaseIdx) { // gas phase enthalpy depends strongly on composition |
535 | 5668600 | Scalar hgc = NAPL::gasEnthalpy(fluidState.temperature(phaseIdx), | |
536 | fluidState.pressure(phaseIdx)); | ||
537 | 5668600 | Scalar hgw = H2O::gasEnthalpy(fluidState.temperature(phaseIdx), | |
538 | fluidState.pressure(phaseIdx)); | ||
539 | // pressure is only a dummy here (not dependent on pressure, just temperature) | ||
540 | 5668600 | Scalar hga = Air::gasEnthalpy(fluidState.temperature(phaseIdx), fluidState.pressure(phaseIdx)); | |
541 | |||
542 | 1889534 | Scalar result = 0; | |
543 | 1889534 | result += hgw * fluidState.massFraction(gPhaseIdx, H2OIdx); | |
544 | 1889534 | result += hga * fluidState.massFraction(gPhaseIdx, AirIdx); | |
545 | 1889534 | result += hgc * fluidState.massFraction(gPhaseIdx, NAPLIdx); | |
546 | |||
547 | 1889534 | return result; | |
548 | } | ||
549 | ✗ | DUNE_THROW(Dune::InvalidStateException, "Invalid phase index " << phaseIdx); | |
550 | } | ||
551 | |||
552 | /*! | ||
553 | * \brief Returns the specific enthalpy \f$\mathrm{[J/kg]}\f$ of a component in a specific phase | ||
554 | * \param fluidState The fluid state | ||
555 | * \param phaseIdx The index of the phase | ||
556 | * \param componentIdx The index of the component | ||
557 | */ | ||
558 | template <class FluidState> | ||
559 | static Scalar componentEnthalpy(const FluidState& fluidState, int phaseIdx, int componentIdx) | ||
560 | { | ||
561 | const Scalar T = fluidState.temperature(phaseIdx); | ||
562 | const Scalar p = fluidState.pressure(phaseIdx); | ||
563 | |||
564 | if (phaseIdx == wPhaseIdx) | ||
565 | { | ||
566 | if (componentIdx == H2OIdx) | ||
567 | return H2O::liquidEnthalpy(T, p); | ||
568 | else if (componentIdx == NAPLIdx) | ||
569 | DUNE_THROW(Dune::NotImplemented, "The component enthalpy for NAPL in water is not implemented."); | ||
570 | else if (componentIdx == AirIdx) | ||
571 | DUNE_THROW(Dune::NotImplemented, "The component enthalpy for Air in water is not implemented."); | ||
572 | DUNE_THROW(Dune::InvalidStateException, "Invalid component index " << componentIdx); | ||
573 | } | ||
574 | else if (phaseIdx == nPhaseIdx) | ||
575 | { | ||
576 | if (componentIdx == H2OIdx) | ||
577 | DUNE_THROW(Dune::NotImplemented, "The component enthalpy for water in NAPL is not implemented."); | ||
578 | else if (componentIdx == NAPLIdx) | ||
579 | return NAPL::liquidEnthalpy(T, p); | ||
580 | else if (componentIdx == AirIdx) | ||
581 | DUNE_THROW(Dune::NotImplemented, "The component enthalpy for air in NAPL is not implemented."); | ||
582 | DUNE_THROW(Dune::InvalidStateException, "Invalid component index " << componentIdx); | ||
583 | } | ||
584 | else if (phaseIdx == gPhaseIdx) | ||
585 | { | ||
586 | if (componentIdx == H2OIdx) | ||
587 | return H2O::gasEnthalpy(T, p); | ||
588 | else if (componentIdx == NAPLIdx) | ||
589 | return NAPL::gasEnthalpy(T, p); | ||
590 | else if (componentIdx == AirIdx) | ||
591 | return Air::gasEnthalpy(T,p); | ||
592 | DUNE_THROW(Dune::InvalidStateException, "Invalid component index " << componentIdx); | ||
593 | } | ||
594 | DUNE_THROW(Dune::InvalidStateException, "Invalid phase index " << phaseIdx); | ||
595 | } | ||
596 | |||
597 | using Base<Scalar, ThisType>::heatCapacity; | ||
598 | //! \copydoc Base<Scalar,ThisType>::heatCapacity(const FluidState&,int) | ||
599 | template <class FluidState> | ||
600 | 3 | static Scalar heatCapacity(const FluidState &fluidState, | |
601 | int phaseIdx) | ||
602 | { | ||
603 |
7/16✓ Branch 2 taken 3 times.
✗ Branch 3 not taken.
✓ Branch 11 taken 3 times.
✗ Branch 12 not taken.
✓ Branch 15 taken 3 times.
✗ Branch 16 not taken.
✓ Branch 18 taken 3 times.
✗ Branch 19 not taken.
✓ Branch 21 taken 3 times.
✗ Branch 22 not taken.
✓ Branch 23 taken 3 times.
✗ Branch 24 not taken.
✗ Branch 26 not taken.
✓ Branch 27 taken 3 times.
✗ Branch 29 not taken.
✗ Branch 30 not taken.
|
33 | DUNE_THROW(Dune::NotImplemented, "FluidSystems::H2OAirMesitylene::heatCapacity()"); |
604 | } | ||
605 | |||
606 | using Base<Scalar, ThisType>::thermalConductivity; | ||
607 | //! \copydoc Base<Scalar,ThisType>::thermalConductivity(const FluidState&,int) | ||
608 | template <class FluidState> | ||
609 | 5668746 | static Scalar thermalConductivity(const FluidState &fluidState, | |
610 | int phaseIdx) | ||
611 | { | ||
612 |
2/2✓ Branch 0 taken 1889581 times.
✓ Branch 1 taken 3779162 times.
|
5668746 | const Scalar temperature = fluidState.temperature(phaseIdx) ; |
613 |
2/2✓ Branch 0 taken 1889581 times.
✓ Branch 1 taken 3779162 times.
|
5668746 | const Scalar pressure = fluidState.pressure(phaseIdx); |
614 |
2/2✓ Branch 0 taken 1889582 times.
✓ Branch 1 taken 3779164 times.
|
5668746 | if (phaseIdx == wPhaseIdx) |
615 | { | ||
616 | 1889582 | return H2O::liquidThermalConductivity(temperature, pressure); | |
617 | } | ||
618 |
2/2✓ Branch 0 taken 1889582 times.
✓ Branch 1 taken 1889582 times.
|
3779164 | else if (phaseIdx == nPhaseIdx) |
619 | { | ||
620 | return NAPL::liquidThermalConductivity(temperature, pressure); | ||
621 | } | ||
622 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1889582 times.
|
1889582 | else if (phaseIdx == gPhaseIdx) |
623 | { | ||
624 | return Air::gasThermalConductivity(temperature, pressure); | ||
625 | } | ||
626 | ✗ | DUNE_THROW(Dune::InvalidStateException, "Invalid phase index " << phaseIdx); | |
627 | } | ||
628 | |||
629 | private: | ||
630 | static Scalar waterPhaseDensity_(Scalar T, Scalar pw, Scalar xww, Scalar xwa, Scalar xwc) | ||
631 | { | ||
632 | Scalar rholH2O = H2O::liquidDensity(T, pw); | ||
633 | Scalar clH2O = rholH2O/H2O::molarMass(); | ||
634 | |||
635 | // this assumes each dissolved molecule displaces exactly one | ||
636 | // water molecule in the liquid | ||
637 | return clH2O*(xww*H2O::molarMass() + xwa*Air::molarMass() + xwc*NAPL::molarMass()); | ||
638 | } | ||
639 | |||
640 | static Scalar gasPhaseDensity_(Scalar T, Scalar pg, Scalar xgw, Scalar xga, Scalar xgc) | ||
641 | { | ||
642 | return H2O::gasDensity(T, pg*xgw) + Air::gasDensity(T, pg*xga) + NAPL::gasDensity(T, pg*xgc); | ||
643 | } | ||
644 | |||
645 | static Scalar NAPLPhaseDensity_(Scalar T, Scalar pn) | ||
646 | { | ||
647 | return NAPL::liquidDensity(T, pn); | ||
648 | } | ||
649 | |||
650 | }; | ||
651 | |||
652 | } // end namespace FluidSystems | ||
653 | } // end namespace Dumux | ||
654 | |||
655 | #endif | ||
656 |