Line | Branch | Exec | Source |
---|---|---|---|
1 | // -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- | ||
2 | // vi: set et ts=4 sw=4 sts=4: | ||
3 | // | ||
4 | // SPDX-FileCopyrightText: Copyright © DuMux Project contributors, see AUTHORS.md in root folder | ||
5 | // SPDX-License-Identifier: GPL-3.0-or-later | ||
6 | // | ||
7 | /*! | ||
8 | * \file | ||
9 | * \ingroup FluidSystems | ||
10 | * \copybrief Dumux::FluidSystems::H2OAirXylene | ||
11 | */ | ||
12 | #ifndef DUMUX_H2O_AIR_XYLENE_FLUID_SYSTEM_HH | ||
13 | #define DUMUX_H2O_AIR_XYLENE_FLUID_SYSTEM_HH | ||
14 | |||
15 | #include <dumux/material/idealgas.hh> | ||
16 | #include <dumux/material/components/air.hh> | ||
17 | #include <dumux/material/components/h2o.hh> | ||
18 | #include <dumux/material/components/xylene.hh> | ||
19 | #include <dumux/material/components/tabulatedcomponent.hh> | ||
20 | |||
21 | #include <dumux/material/binarycoefficients/h2o_air.hh> | ||
22 | #include <dumux/material/binarycoefficients/h2o_xylene.hh> | ||
23 | #include <dumux/material/binarycoefficients/air_xylene.hh> | ||
24 | |||
25 | #include <dumux/material/fluidsystems/base.hh> | ||
26 | |||
27 | #include <dumux/io/name.hh> | ||
28 | |||
29 | namespace Dumux::FluidSystems { | ||
30 | |||
31 | /*! | ||
32 | * \ingroup FluidSystems | ||
33 | * \brief A three-phase fluid system featuring gas, NAPL and water as phases and | ||
34 | * distilled water \f$(\mathrm{H_2O})\f$ and air (Pseudo component composed of | ||
35 | * \f$\mathrm{79\%\;N_2}\f$, \f$\mathrm{20\%\;O_2}\f$ and Mesitylene \f$(\mathrm{C_8H_{10}})\f$ as components. | ||
36 | * | ||
37 | * \note This fluid system assumes all phases to be ideal mixtures. | ||
38 | */ | ||
39 | template <class Scalar, | ||
40 | class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> > > | ||
41 | class H2OAirXylene | ||
42 | : public Base<Scalar, H2OAirXylene<Scalar, H2OType> > | ||
43 | { | ||
44 | using ThisType = H2OAirXylene<Scalar, H2OType>; | ||
45 | |||
46 | public: | ||
47 | using H2O = H2OType; | ||
48 | using NAPL = Components::Xylene<Scalar>; | ||
49 | using Air = Dumux::Components::Air<Scalar>; | ||
50 | |||
51 | static const int numPhases = 3; | ||
52 | static const int numComponents = 3; | ||
53 | |||
54 | static const int wPhaseIdx = 0; // index of the water phase | ||
55 | static const int nPhaseIdx = 1; // index of the NAPL phase | ||
56 | static const int gPhaseIdx = 2; // index of the gas phase | ||
57 | |||
58 | static const int H2OIdx = 0; | ||
59 | static const int NAPLIdx = 1; | ||
60 | static const int AirIdx = 2; | ||
61 | |||
62 | // export component indices to indicate the main component | ||
63 | // of the corresponding phase at atmospheric pressure 1 bar | ||
64 | // and room temperature 20°C: | ||
65 | static const int wCompIdx = H2OIdx; | ||
66 | static const int nCompIdx = NAPLIdx; | ||
67 | static const int gCompIdx = AirIdx; | ||
68 | |||
69 | /*! | ||
70 | * \brief Initialize the fluid system's static parameters generically | ||
71 | * | ||
72 | * If a tabulated H2O component is used, we do our best to create | ||
73 | * tables that always work. | ||
74 | */ | ||
75 | 3 | static void init() | |
76 | { | ||
77 |
1/2✓ Branch 1 taken 3 times.
✗ Branch 2 not taken.
|
3 | init(/*tempMin=*/273.15, |
78 | /*tempMax=*/623.15, | ||
79 | /*numTemp=*/100, | ||
80 | /*pMin=*/0.0, | ||
81 | /*pMax=*/20e6, | ||
82 | /*numP=*/200); | ||
83 | 2 | } | |
84 | |||
85 | /*! | ||
86 | * \brief Initialize the fluid system's static parameters using | ||
87 | * problem specific temperature and pressure ranges | ||
88 | * | ||
89 | * \param tempMin The minimum temperature used for tabulation of water \f$\mathrm{[K]}\f$ | ||
90 | * \param tempMax The maximum temperature used for tabulation of water \f$\mathrm{[K]}\f$ | ||
91 | * \param nTemp The number of ticks on the temperature axis of the table of water | ||
92 | * \param pressMin The minimum pressure used for tabulation of water \f$\mathrm{[Pa]}\f$ | ||
93 | * \param pressMax The maximum pressure used for tabulation of water \f$\mathrm{[Pa]}\f$ | ||
94 | * \param nPress The number of ticks on the pressure axis of the table of water | ||
95 | */ | ||
96 | 3 | static void init(Scalar tempMin, Scalar tempMax, unsigned nTemp, | |
97 | Scalar pressMin, Scalar pressMax, unsigned nPress) | ||
98 | { | ||
99 | if (H2O::isTabulated) | ||
100 | { | ||
101 |
1/2✓ Branch 1 taken 2 times.
✗ Branch 2 not taken.
|
3 | H2O::init(tempMin, tempMax, nTemp, |
102 | pressMin, pressMax, nPress); | ||
103 | } | ||
104 | } | ||
105 | |||
106 | /*! | ||
107 | * \brief Returns whether the fluids are miscible | ||
108 | */ | ||
109 | static constexpr bool isMiscible() | ||
110 | { return true; } | ||
111 | |||
112 | /*! | ||
113 | * \brief Return whether a phase is gaseous | ||
114 | * | ||
115 | * \param phaseIdx The index of the fluid phase to consider | ||
116 | */ | ||
117 | 3 | static constexpr bool isGas(int phaseIdx) | |
118 | { | ||
119 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 3 times.
|
3 | assert(0 <= phaseIdx && phaseIdx < numPhases); |
120 | return phaseIdx == gPhaseIdx; | ||
121 | } | ||
122 | |||
123 | /*! | ||
124 | * \brief Returns true if and only if a fluid phase is assumed to | ||
125 | * be an ideal gas. | ||
126 | * | ||
127 | * \param phaseIdx The index of the fluid phase to consider | ||
128 | */ | ||
129 | static bool isIdealGas(int phaseIdx) | ||
130 | { return phaseIdx == gPhaseIdx && H2O::gasIsIdeal() && Air::gasIsIdeal() && NAPL::gasIsIdeal(); } | ||
131 | |||
132 | /*! | ||
133 | * \brief Returns true if and only if a fluid phase is assumed to | ||
134 | * be an ideal mixture. | ||
135 | * | ||
136 | * We define an ideal mixture as a fluid phase where the fugacity | ||
137 | * coefficients of all components times the pressure of the phase | ||
138 | * are independent on the fluid composition. This assumption is true | ||
139 | * if Henry's law and Raoult's law apply. If you are unsure what | ||
140 | * this function should return, it is safe to return false. The | ||
141 | * only damage done will be (slightly) increased computation times | ||
142 | * in some cases. | ||
143 | * | ||
144 | * \param phaseIdx The index of the fluid phase to consider | ||
145 | */ | ||
146 | ✗ | static bool isIdealMixture(int phaseIdx) | |
147 | { | ||
148 | ✗ | assert(0 <= phaseIdx && phaseIdx < numPhases); | |
149 | // we assume Henry's and Raoult's laws for the water phase and | ||
150 | // and no interaction between gas molecules of different | ||
151 | // components, so all phases are ideal mixtures! | ||
152 | return true; | ||
153 | } | ||
154 | |||
155 | /*! | ||
156 | * \brief Returns true if and only if a fluid phase is assumed to | ||
157 | * be compressible. | ||
158 | * | ||
159 | * Compressible means that the partial derivative of the density | ||
160 | * to the fluid pressure is always larger than zero. | ||
161 | * | ||
162 | * \param phaseIdx The index of the fluid phase to consider | ||
163 | */ | ||
164 | 3 | static constexpr bool isCompressible(int phaseIdx) | |
165 | { | ||
166 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 3 times.
|
3 | assert(0 <= phaseIdx && phaseIdx < numPhases); |
167 | // gases are always compressible | ||
168 |
2/2✓ Branch 0 taken 1 times.
✓ Branch 1 taken 2 times.
|
3 | if (phaseIdx == gPhaseIdx) |
169 | return true; | ||
170 |
2/2✓ Branch 0 taken 1 times.
✓ Branch 1 taken 1 times.
|
2 | else if (phaseIdx == wPhaseIdx) |
171 | // the water component decides for the water phase... | ||
172 | return H2O::liquidIsCompressible(); | ||
173 | |||
174 | // the NAPL component decides for the napl phase... | ||
175 | return NAPL::liquidIsCompressible(); | ||
176 | } | ||
177 | |||
178 | /*! | ||
179 | * \brief Return the human readable name of a phase (used in indices) | ||
180 | * \param phaseIdx The index of the fluid phase to consider | ||
181 | */ | ||
182 | 39 | static std::string phaseName(int phaseIdx) | |
183 | { | ||
184 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 39 times.
|
39 | assert(0 <= phaseIdx && phaseIdx < numPhases); |
185 |
3/3✓ Branch 0 taken 13 times.
✓ Branch 1 taken 13 times.
✓ Branch 2 taken 13 times.
|
39 | switch (phaseIdx) |
186 | { | ||
187 | 13 | case wPhaseIdx: return IOName::aqueousPhase(); | |
188 | 13 | case nPhaseIdx: return IOName::naplPhase(); | |
189 | 13 | case gPhaseIdx: return IOName::gaseousPhase(); | |
190 | } | ||
191 | DUNE_THROW(Dune::InvalidStateException, "Invalid phase index " << phaseIdx); | ||
192 | } | ||
193 | |||
194 | /*! | ||
195 | * \brief Return the human readable name of a component (used in indices) | ||
196 | * \param compIdx The index of the component to consider | ||
197 | */ | ||
198 | 21 | static std::string componentName(int compIdx) | |
199 | { | ||
200 |
3/4✓ Branch 0 taken 7 times.
✓ Branch 1 taken 7 times.
✓ Branch 2 taken 7 times.
✗ Branch 3 not taken.
|
21 | switch (compIdx) { |
201 | 7 | case H2OIdx: return H2O::name(); | |
202 | 7 | case AirIdx: return Air::name(); | |
203 | 7 | case NAPLIdx: return NAPL::name(); | |
204 | } | ||
205 | ✗ | DUNE_THROW(Dune::InvalidStateException, "Invalid component index " << compIdx); | |
206 | } | ||
207 | |||
208 | /*! | ||
209 | * \brief Return the molar mass of a component in \f$\mathrm{[kg/mol]}\f$ | ||
210 | * \param compIdx The index of the component to consider | ||
211 | */ | ||
212 |
2/3✓ Branch 0 taken 33 times.
✓ Branch 1 taken 237080022 times.
✗ Branch 2 not taken.
|
246194994 | static Scalar molarMass(int compIdx) |
213 | { | ||
214 | switch (compIdx) { | ||
215 | case H2OIdx: return H2O::molarMass(); | ||
216 | case AirIdx: return Air::molarMass(); | ||
217 | case NAPLIdx: return NAPL::molarMass(); | ||
218 | } | ||
219 | ✗ | DUNE_THROW(Dune::InvalidStateException, "Invalid component index " << compIdx); | |
220 | } | ||
221 | |||
222 | using Base<Scalar, ThisType>::density; | ||
223 | /*! | ||
224 | * \brief Given a phase's composition, temperature, pressure, and | ||
225 | * the partial pressures of all components, return its | ||
226 | * density \f$\mathrm{[kg/m^3]}\f$. | ||
227 | * | ||
228 | * We apply Eq. (7) | ||
229 | * in Class et al. (2002a) \cite A3:class:2002b <BR> | ||
230 | * for the water density. | ||
231 | * | ||
232 | * \param fluidState The fluid state | ||
233 | * \param phaseIdx The index of the phase | ||
234 | */ | ||
235 | template <class FluidState> | ||
236 | 9889974 | static Scalar density(const FluidState &fluidState, int phaseIdx) | |
237 | { | ||
238 |
2/2✓ Branch 0 taken 3296658 times.
✓ Branch 1 taken 3296659 times.
|
6593317 | if (phaseIdx == wPhaseIdx) { |
239 | // This assumes each gas molecule displaces exactly one | ||
240 | // molecule in the liquid. | ||
241 | 3296658 | return H2O::liquidMolarDensity(fluidState.temperature(phaseIdx), fluidState.pressure(phaseIdx)) | |
242 | 3296658 | * (H2O::molarMass()*fluidState.moleFraction(wPhaseIdx, H2OIdx) | |
243 | 3296658 | + Air::molarMass()*fluidState.moleFraction(wPhaseIdx, AirIdx) | |
244 | 3296658 | + NAPL::molarMass()*fluidState.moleFraction(wPhaseIdx, NAPLIdx)); | |
245 | } | ||
246 |
2/2✓ Branch 0 taken 1 times.
✓ Branch 1 taken 3296658 times.
|
3296659 | else if (phaseIdx == nPhaseIdx) { |
247 | // assume pure NAPL for the NAPL phase | ||
248 | 3296658 | Scalar pressure = NAPL::liquidIsCompressible()?fluidState.pressure(phaseIdx):1e100; | |
249 | 3296658 | return NAPL::liquidDensity(fluidState.temperature(phaseIdx), pressure); | |
250 | } | ||
251 | |||
252 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 3296658 times.
|
3296658 | assert (phaseIdx == gPhaseIdx); |
253 | 3296658 | Scalar pH2O = | |
254 | 3296658 | fluidState.moleFraction(gPhaseIdx, H2OIdx) * | |
255 | 3296658 | fluidState.pressure(gPhaseIdx); | |
256 | 3296658 | Scalar pAir = | |
257 | 3296658 | fluidState.moleFraction(gPhaseIdx, AirIdx) * | |
258 | 3296658 | fluidState.pressure(gPhaseIdx); | |
259 | 3296658 | Scalar pNAPL = | |
260 | 3296658 | fluidState.moleFraction(gPhaseIdx, NAPLIdx) * | |
261 | 3296658 | fluidState.pressure(gPhaseIdx); | |
262 | 3296658 | return H2O::gasDensity(fluidState.temperature(phaseIdx), pH2O) | |
263 | 3296658 | + Air::gasDensity(fluidState.temperature(phaseIdx), pAir) | |
264 | 3296658 | + NAPL::gasDensity(fluidState.temperature(phaseIdx), pNAPL); | |
265 | } | ||
266 | |||
267 | using Base<Scalar, ThisType>::molarDensity; | ||
268 | //! \copydoc Base<Scalar,ThisType>::molarDensity(const FluidState&,int) | ||
269 | template <class FluidState> | ||
270 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 3296657 times.
|
9889974 | static Scalar molarDensity(const FluidState &fluidState, int phaseIdx) |
271 | { | ||
272 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 3296657 times.
|
9889974 | Scalar temperature = fluidState.temperature(phaseIdx); |
273 | 3296660 | Scalar pressure = fluidState.pressure(phaseIdx); | |
274 |
2/2✓ Branch 0 taken 1 times.
✓ Branch 1 taken 3296659 times.
|
3296660 | if (phaseIdx == nPhaseIdx) |
275 | { | ||
276 | 3296658 | return NAPL::liquidMolarDensity(temperature, pressure); | |
277 | } | ||
278 |
2/2✓ Branch 0 taken 1 times.
✓ Branch 1 taken 3296658 times.
|
3296659 | else if (phaseIdx == wPhaseIdx) |
279 | { // This assumes each gas molecule displaces exactly one | ||
280 | // molecule in the liquid. | ||
281 | 3296658 | return H2O::liquidMolarDensity(temperature, pressure); | |
282 | } | ||
283 | else | ||
284 | { | ||
285 | 3296658 | return H2O::gasMolarDensity(temperature, fluidState.partialPressure(gPhaseIdx, H2OIdx)) | |
286 | 3296658 | + NAPL::gasMolarDensity(temperature, fluidState.partialPressure(gPhaseIdx, NAPLIdx)) | |
287 | 3296658 | + Air::gasMolarDensity(temperature, fluidState.partialPressure(gPhaseIdx, AirIdx)); | |
288 | } | ||
289 | } | ||
290 | |||
291 | using Base<Scalar, ThisType>::viscosity; | ||
292 | /*! | ||
293 | * \brief Return the viscosity of a phase \f$\mathrm{[Pa s]}\f$. | ||
294 | * \param fluidState The fluid state | ||
295 | * \param phaseIdx The index of the phase to consider | ||
296 | * | ||
297 | * \todo Check the parameter phiCAW for the xylene case and give a physical meaningful name | ||
298 | */ | ||
299 | template <class FluidState> | ||
300 | 9889974 | static Scalar viscosity(const FluidState &fluidState, | |
301 | int phaseIdx) | ||
302 | { | ||
303 |
2/2✓ Branch 0 taken 3296658 times.
✓ Branch 1 taken 6593316 times.
|
9889974 | if (phaseIdx == wPhaseIdx) { |
304 | // assume pure water viscosity | ||
305 | 3296658 | return H2O::liquidViscosity(fluidState.temperature(phaseIdx), | |
306 | fluidState.pressure(phaseIdx)); | ||
307 | } | ||
308 |
2/2✓ Branch 0 taken 3296658 times.
✓ Branch 1 taken 3296658 times.
|
6593316 | else if (phaseIdx == nPhaseIdx) { |
309 | // assume pure NAPL viscosity | ||
310 | 3296658 | return NAPL::liquidViscosity(fluidState.temperature(phaseIdx), | |
311 | 3296658 | fluidState.pressure(phaseIdx)); | |
312 | } | ||
313 | |||
314 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 3296658 times.
|
3296658 | assert (phaseIdx == gPhaseIdx); |
315 | |||
316 | /* Wilke method. See: | ||
317 | * | ||
318 | * See: R. Reid, et al.: The Properties of Gases and Liquids, | ||
319 | * 4th edition, McGraw-Hill, 1987, 407-410 | ||
320 | * 5th edition, McGraw-Hill, 20001, p. 9.21/22 | ||
321 | * | ||
322 | * in this case, we use a simplified version in order to avoid | ||
323 | * computationally costly evaluation of sqrt and pow functions and | ||
324 | * divisions | ||
325 | * -- compare e.g. with Promo Class p. 32/33 | ||
326 | */ | ||
327 | Scalar muResult; | ||
328 | 3296660 | const Scalar mu[numComponents] = { | |
329 | 3296658 | h2oGasViscosityInMixture(fluidState.temperature(phaseIdx),fluidState.pressure(phaseIdx)), | |
330 | 3296658 | Air::gasViscosity(fluidState.temperature(phaseIdx), fluidState.pressure(phaseIdx)), | |
331 | 3296658 | NAPL::gasViscosity(fluidState.temperature(phaseIdx), NAPL::vaporPressure(fluidState.temperature(phaseIdx))) | |
332 | }; | ||
333 | // molar masses | ||
334 | const Scalar M[numComponents] = { | ||
335 | H2O::molarMass(), | ||
336 | Air::molarMass(), | ||
337 | NAPL::molarMass() | ||
338 | }; | ||
339 | |||
340 | 3296658 | Scalar muAW = mu[AirIdx]*fluidState.moleFraction(gPhaseIdx, AirIdx) | |
341 | 3296658 | + mu[H2OIdx]*fluidState.moleFraction(gPhaseIdx, H2OIdx) | |
342 | 3296658 | / (fluidState.moleFraction(gPhaseIdx, AirIdx) | |
343 | 3296658 | + fluidState.moleFraction(gPhaseIdx, H2OIdx)); | |
344 | 3296658 | Scalar xAW = fluidState.moleFraction(gPhaseIdx, AirIdx) | |
345 | 3296657 | + fluidState.moleFraction(gPhaseIdx, H2OIdx); | |
346 | |||
347 | 3296658 | Scalar MAW = (fluidState.moleFraction(gPhaseIdx, AirIdx)*Air::molarMass() | |
348 | 3296658 | + fluidState.moleFraction(gPhaseIdx, H2OIdx)*H2O::molarMass()) | |
349 | / xAW; | ||
350 | |||
351 | 3296658 | Scalar phiCAW = 0.3; // simplification for this particular system | |
352 | /* actually like this | ||
353 | * using std::sqrt; | ||
354 | * using std::pow; | ||
355 | * Scalar phiCAW = pow(1.+sqrt(mu[NAPLIdx]/muAW)*pow(MAW/M[NAPLIdx],0.25),2) | ||
356 | * / sqrt(8.*(1.+M[NAPLIdx]/MAW)); | ||
357 | */ | ||
358 | 3296658 | Scalar phiAWC = phiCAW * muAW*M[NAPLIdx]/(mu[NAPLIdx]*MAW); | |
359 | |||
360 | 3296658 | muResult = (xAW*muAW)/(xAW+fluidState.moleFraction(gPhaseIdx, NAPLIdx)*phiAWC) | |
361 | 3296658 | + (fluidState.moleFraction(gPhaseIdx, NAPLIdx) * mu[NAPLIdx]) | |
362 | 3296658 | / (fluidState.moleFraction(gPhaseIdx, NAPLIdx) + xAW*phiCAW); | |
363 | 3296658 | return muResult; | |
364 | } | ||
365 | |||
366 | |||
367 | using Base<Scalar, ThisType>::diffusionCoefficient; | ||
368 | //! \copydoc Base<Scalar,ThisType>::diffusionCoefficient(const FluidState&,int,int) | ||
369 | template <class FluidState> | ||
370 |
2/2✓ Branch 0 taken 6593314 times.
✓ Branch 1 taken 13186628 times.
|
19779951 | static Scalar diffusionCoefficient(const FluidState &fluidState, |
371 | int phaseIdx, | ||
372 | int compIdx) | ||
373 | { | ||
374 |
2/2✓ Branch 0 taken 6593314 times.
✓ Branch 1 taken 13186628 times.
|
19779951 | Scalar temperature = fluidState.temperature(phaseIdx); |
375 | 19779951 | Scalar pressure = fluidState.pressure(phaseIdx); | |
376 |
2/2✓ Branch 0 taken 6593317 times.
✓ Branch 1 taken 13186634 times.
|
19779951 | if (phaseIdx==gPhaseIdx) { |
377 | 6593317 | Scalar diffAC = BinaryCoeff::Air_Xylene::gasDiffCoeff(temperature, pressure); | |
378 |
2/2✓ Branch 1 taken 3296657 times.
✓ Branch 2 taken 3296657 times.
|
6593317 | Scalar diffWC = BinaryCoeff::H2O_Xylene::gasDiffCoeff(temperature, pressure); |
379 |
2/2✓ Branch 0 taken 3296657 times.
✓ Branch 1 taken 3296657 times.
|
6593317 | Scalar diffAW = BinaryCoeff::H2O_Air::gasDiffCoeff(temperature, pressure); |
380 | |||
381 | 6593317 | const Scalar xga = fluidState.moleFraction(gPhaseIdx, AirIdx); | |
382 | 6593317 | const Scalar xgw = fluidState.moleFraction(gPhaseIdx, H2OIdx); | |
383 | 6593317 | const Scalar xgc = fluidState.moleFraction(gPhaseIdx, NAPLIdx); | |
384 | |||
385 |
2/2✓ Branch 0 taken 3296658 times.
✓ Branch 1 taken 3296659 times.
|
6593317 | if (compIdx==NAPLIdx) |
386 | 3296658 | return (1.- xgw)/(xga/diffAW + xgc/diffWC); | |
387 |
2/2✓ Branch 0 taken 3296658 times.
✓ Branch 1 taken 1 times.
|
3296659 | else if (compIdx==H2OIdx) |
388 | 3296658 | return (1.- xgc)/(xgw/diffWC + xga/diffAC); | |
389 |
1/2✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
|
1 | else if (compIdx==AirIdx) |
390 |
10/20✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 1 times.
✗ Branch 5 not taken.
✓ Branch 7 taken 1 times.
✗ Branch 8 not taken.
✓ Branch 10 taken 1 times.
✗ Branch 11 not taken.
✓ Branch 13 taken 1 times.
✗ Branch 14 not taken.
✓ Branch 16 taken 1 times.
✗ Branch 17 not taken.
✓ Branch 19 taken 1 times.
✗ Branch 20 not taken.
✓ Branch 22 taken 1 times.
✗ Branch 23 not taken.
✓ Branch 25 taken 1 times.
✗ Branch 26 not taken.
✓ Branch 28 taken 1 times.
✗ Branch 29 not taken.
|
5 | DUNE_THROW(Dune::InvalidStateException, |
391 | "Diffusivity of Air in the gas phase " | ||
392 | "is constraint by sum of diffusive fluxes = 0 !\n"); | ||
393 |
2/2✓ Branch 0 taken 6593317 times.
✓ Branch 1 taken 6593317 times.
|
13186634 | } else if (phaseIdx==wPhaseIdx){ |
394 | 6593317 | Scalar diffACl = BinaryCoeff::Air_Xylene::liquidDiffCoeff(temperature, pressure); | |
395 |
2/4✓ Branch 0 taken 3296657 times.
✓ Branch 1 taken 3296657 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
|
6593317 | Scalar diffWCl = BinaryCoeff::H2O_Xylene::liquidDiffCoeff(temperature, pressure); |
396 |
2/4✓ Branch 0 taken 3296657 times.
✓ Branch 1 taken 3296657 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
|
6593317 | Scalar diffAWl = BinaryCoeff::H2O_Air::liquidDiffCoeff(temperature, pressure); |
397 | |||
398 | 6593317 | Scalar xwa = fluidState.moleFraction(wPhaseIdx, AirIdx); | |
399 | 6593317 | Scalar xww = fluidState.moleFraction(wPhaseIdx, H2OIdx); | |
400 | 6593317 | Scalar xwc = fluidState.moleFraction(wPhaseIdx, NAPLIdx); | |
401 | |||
402 | Scalar diffCont; | ||
403 | |||
404 |
3/4✓ Branch 0 taken 3296658 times.
✓ Branch 1 taken 3296658 times.
✓ Branch 2 taken 1 times.
✗ Branch 3 not taken.
|
6593317 | switch (compIdx) { |
405 | 3296658 | case NAPLIdx: | |
406 | 3296658 | diffCont = (1.- xww)/(xwa/diffAWl + xwc/diffWCl); | |
407 | 3296658 | return diffCont; | |
408 | 3296658 | case AirIdx: | |
409 | 3296658 | diffCont = (1.- xwc)/(xww/diffWCl + xwa/diffACl); | |
410 | 3296658 | return diffCont; | |
411 | 1 | case H2OIdx: | |
412 |
10/20✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 1 times.
✗ Branch 5 not taken.
✓ Branch 7 taken 1 times.
✗ Branch 8 not taken.
✓ Branch 10 taken 1 times.
✗ Branch 11 not taken.
✓ Branch 13 taken 1 times.
✗ Branch 14 not taken.
✓ Branch 16 taken 1 times.
✗ Branch 17 not taken.
✓ Branch 19 taken 1 times.
✗ Branch 20 not taken.
✓ Branch 22 taken 1 times.
✗ Branch 23 not taken.
✓ Branch 25 taken 1 times.
✗ Branch 26 not taken.
✓ Branch 28 taken 1 times.
✗ Branch 29 not taken.
|
4 | DUNE_THROW(Dune::InvalidStateException, |
413 | "Diffusivity of water in the water phase " | ||
414 | "is constraint by sum of diffusive fluxes = 0 !\n"); | ||
415 | } | ||
416 | } else if (phaseIdx==nPhaseIdx) { | ||
417 | return 0.0; | ||
418 | } | ||
419 | return 0; | ||
420 | } | ||
421 | |||
422 | using Base<Scalar, ThisType>::binaryDiffusionCoefficient; | ||
423 | //! \copydoc Base<Scalar,ThisType>::binaryDiffusionCoefficient(const FluidState&,int,int,int) | ||
424 | template <class FluidState> | ||
425 | 27 | static Scalar binaryDiffusionCoefficient(const FluidState &fluidState, | |
426 | int phaseIdx, | ||
427 | int compIIdx, | ||
428 | int compJIdx) | ||
429 | { | ||
430 |
10/20✓ Branch 1 taken 27 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 27 times.
✗ Branch 5 not taken.
✓ Branch 7 taken 27 times.
✗ Branch 8 not taken.
✓ Branch 10 taken 27 times.
✗ Branch 11 not taken.
✓ Branch 13 taken 27 times.
✗ Branch 14 not taken.
✓ Branch 16 taken 27 times.
✗ Branch 17 not taken.
✓ Branch 19 taken 27 times.
✗ Branch 20 not taken.
✓ Branch 22 taken 27 times.
✗ Branch 23 not taken.
✓ Branch 25 taken 27 times.
✗ Branch 26 not taken.
✓ Branch 28 taken 27 times.
✗ Branch 29 not taken.
|
108 | DUNE_THROW(Dune::NotImplemented, "FluidSystems::H2OAirXylene::binaryDiffusionCoefficient()"); |
431 | } | ||
432 | |||
433 | using Base<Scalar, ThisType>::fugacityCoefficient; | ||
434 | /*! | ||
435 | * \brief Returns the fugacity coefficient \f$\mathrm{[-]}\f$ of a component in a | ||
436 | * phase. | ||
437 | * \param fluidState The fluid state | ||
438 | * \param phaseIdx The index of the phase to consider | ||
439 | * \param compIdx The index of the component to consider | ||
440 | * | ||
441 | * In this case, things are actually pretty simple. We have an ideal | ||
442 | * solution. Thus, the fugacity coefficient is 1 in the gas phase | ||
443 | * (fugacity equals the partial pressure of the component in the gas phase) | ||
444 | * respectively in the liquid phases it is the Henry coefficients | ||
445 | * divided by pressure. | ||
446 | */ | ||
447 | template <class FluidState> | ||
448 | 6587092 | static Scalar fugacityCoefficient(const FluidState &fluidState, | |
449 | int phaseIdx, | ||
450 | int compIdx) | ||
451 | { | ||
452 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 36263236 times.
|
36263236 | assert(0 <= phaseIdx && phaseIdx < numPhases); |
453 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 36263236 times.
|
36263236 | assert(0 <= compIdx && compIdx < numComponents); |
454 | |||
455 |
2/2✓ Branch 0 taken 13186628 times.
✓ Branch 1 taken 23076599 times.
|
42850319 | Scalar T = fluidState.temperature(phaseIdx); |
456 | 3296666 | Scalar p = fluidState.pressure(phaseIdx); | |
457 | |||
458 |
2/2✓ Branch 0 taken 13186631 times.
✓ Branch 1 taken 23076605 times.
|
36263236 | if (phaseIdx == wPhaseIdx) { |
459 |
2/2✓ Branch 0 taken 3296658 times.
✓ Branch 1 taken 9889973 times.
|
13186631 | if (compIdx == H2OIdx) |
460 |
1/2✗ Branch 2 not taken.
✓ Branch 3 taken 3290426 times.
|
6587084 | return H2O::vaporPressure(T)/p; |
461 |
2/2✓ Branch 0 taken 6593315 times.
✓ Branch 1 taken 3296658 times.
|
9889973 | else if (compIdx == AirIdx) |
462 | 6593315 | return BinaryCoeff::H2O_Air::henry(T)/p; | |
463 | else if (compIdx == NAPLIdx) | ||
464 | 6593315 | return BinaryCoeff::H2O_Xylene::henry(T)/p; | |
465 | } | ||
466 | |||
467 | // for the NAPL phase, we assume currently that nothing is | ||
468 | // dissolved. this means that the affinity of the NAPL | ||
469 | // component to the NAPL phase is much higher than for the | ||
470 | // other components, i.e. the fugacity coefficient is much | ||
471 | // smaller. | ||
472 |
2/2✓ Branch 0 taken 13186631 times.
✓ Branch 1 taken 9889974 times.
|
23076605 | if (phaseIdx == nPhaseIdx) { |
473 | 13186631 | Scalar phiNapl = NAPL::vaporPressure(T)/p; | |
474 |
2/2✓ Branch 0 taken 6593316 times.
✓ Branch 1 taken 6593315 times.
|
13186631 | if (compIdx == NAPLIdx) |
475 | return phiNapl; | ||
476 |
2/2✓ Branch 0 taken 3296658 times.
✓ Branch 1 taken 3296658 times.
|
6593316 | else if (compIdx == AirIdx) |
477 | 3296658 | return 1e6*phiNapl; | |
478 | else if (compIdx == H2OIdx) | ||
479 | 3296658 | return 1e6*phiNapl; | |
480 | } | ||
481 | |||
482 | // for the gas phase, assume an ideal gas when it comes to | ||
483 | // fugacity (-> fugacity == partial pressure) | ||
484 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 9889974 times.
|
9889974 | assert(phaseIdx == gPhaseIdx); |
485 | return 1.0; | ||
486 | } | ||
487 | |||
488 | template <class FluidState> | ||
489 | static Scalar kelvinVaporPressure(const FluidState &fluidState, | ||
490 | const int phaseIdx, | ||
491 | const int compIdx) | ||
492 | { | ||
493 | DUNE_THROW(Dune::NotImplemented, "FluidSystems::H2OAirXylene::kelvinVaporPressure()"); | ||
494 | } | ||
495 | |||
496 | using Base<Scalar, ThisType>::enthalpy; | ||
497 | /*! | ||
498 | * \brief Given all mole fractions in a phase, return the specific | ||
499 | * phase enthalpy \f$\mathrm{[J/kg]}\f$. | ||
500 | * \param fluidState The fluid state | ||
501 | * \param phaseIdx The index of the phase to consider | ||
502 | * | ||
503 | * \note This system neglects the contribution of gas-molecules in the liquid phase. | ||
504 | * This contribution is probably not big. Somebody would have to find out the enthalpy of solution for this system. ... | ||
505 | */ | ||
506 | template <class FluidState> | ||
507 | 9889974 | static Scalar enthalpy(const FluidState &fluidState, | |
508 | int phaseIdx) | ||
509 | { | ||
510 |
2/2✓ Branch 0 taken 3296658 times.
✓ Branch 1 taken 6593316 times.
|
9889974 | if (phaseIdx == wPhaseIdx) { |
511 | 3296658 | return H2O::liquidEnthalpy(fluidState.temperature(phaseIdx), fluidState.pressure(phaseIdx)); | |
512 | } | ||
513 |
2/2✓ Branch 0 taken 3296658 times.
✓ Branch 1 taken 3296658 times.
|
6593316 | else if (phaseIdx == nPhaseIdx) { |
514 | 3296658 | return NAPL::liquidEnthalpy(fluidState.temperature(phaseIdx), fluidState.pressure(phaseIdx)); | |
515 | } | ||
516 |
1/2✓ Branch 0 taken 3296658 times.
✗ Branch 1 not taken.
|
3296658 | else if (phaseIdx == gPhaseIdx) { // gas phase enthalpy depends strongly on composition |
517 | 3296658 | Scalar hgc = NAPL::gasEnthalpy(fluidState.temperature(phaseIdx), | |
518 | fluidState.pressure(phaseIdx)); | ||
519 | 3296658 | Scalar hgw = H2O::gasEnthalpy(fluidState.temperature(phaseIdx), | |
520 | fluidState.pressure(phaseIdx)); | ||
521 | // pressure is only a dummy here (not dependent on pressure, just temperature) | ||
522 | 3296658 | Scalar hga = Air::gasEnthalpy(fluidState.temperature(phaseIdx), fluidState.pressure(phaseIdx)); | |
523 | |||
524 | 3296658 | Scalar result = 0; | |
525 | 3296658 | result += hgw * fluidState.massFraction(gPhaseIdx, H2OIdx); | |
526 | 3296658 | result += hga * fluidState.massFraction(gPhaseIdx, AirIdx); | |
527 | 3296658 | result += hgc * fluidState.massFraction(gPhaseIdx, NAPLIdx); | |
528 | |||
529 | 3296658 | return result; | |
530 | } | ||
531 | ✗ | DUNE_THROW(Dune::InvalidStateException, "Invalid phase index " << phaseIdx); | |
532 | } | ||
533 | |||
534 | /*! | ||
535 | * \brief Returns the specific enthalpy \f$\mathrm{[J/kg]}\f$ of a component in a specific phase | ||
536 | * \param fluidState The fluid state | ||
537 | * \param phaseIdx The index of the phase | ||
538 | * \param componentIdx The index of the component | ||
539 | */ | ||
540 | template <class FluidState> | ||
541 | static Scalar componentEnthalpy(const FluidState& fluidState, int phaseIdx, int componentIdx) | ||
542 | { | ||
543 | const Scalar T = fluidState.temperature(phaseIdx); | ||
544 | const Scalar p = fluidState.pressure(phaseIdx); | ||
545 | |||
546 | if (phaseIdx == wPhaseIdx) | ||
547 | { | ||
548 | if (componentIdx == H2OIdx) | ||
549 | return H2O::liquidEnthalpy(T, p); | ||
550 | else if (componentIdx == NAPLIdx) | ||
551 | DUNE_THROW(Dune::NotImplemented, "The component enthalpy for NAPL in water is not implemented."); | ||
552 | else if (componentIdx == AirIdx) | ||
553 | DUNE_THROW(Dune::NotImplemented, "The component enthalpy for Air in water is not implemented."); | ||
554 | DUNE_THROW(Dune::InvalidStateException, "Invalid component index " << componentIdx); | ||
555 | } | ||
556 | else if (phaseIdx == nPhaseIdx) | ||
557 | { | ||
558 | if (componentIdx == H2OIdx) | ||
559 | DUNE_THROW(Dune::NotImplemented, "The component enthalpy for water in NAPL is not implemented."); | ||
560 | else if (componentIdx == NAPLIdx) | ||
561 | return NAPL::liquidEnthalpy(T, p); | ||
562 | else if (componentIdx == AirIdx) | ||
563 | DUNE_THROW(Dune::NotImplemented, "The component enthalpy for air in NAPL is not implemented."); | ||
564 | DUNE_THROW(Dune::InvalidStateException, "Invalid component index " << componentIdx); | ||
565 | } | ||
566 | else if (phaseIdx == gPhaseIdx) | ||
567 | { | ||
568 | if (componentIdx == H2OIdx) | ||
569 | return H2O::gasEnthalpy(T, p); | ||
570 | else if (componentIdx == NAPLIdx) | ||
571 | return NAPL::gasEnthalpy(T, p); | ||
572 | else if (componentIdx == AirIdx) | ||
573 | return Air::gasEnthalpy(T,p); | ||
574 | DUNE_THROW(Dune::InvalidStateException, "Invalid component index " << componentIdx); | ||
575 | } | ||
576 | DUNE_THROW(Dune::InvalidStateException, "Invalid phase index " << phaseIdx); | ||
577 | } | ||
578 | |||
579 | using Base<Scalar, ThisType>::heatCapacity; | ||
580 | //! \copydoc Base<Scalar,ThisType>::heatCapacity(const FluidState&,int) | ||
581 | template <class FluidState> | ||
582 | 3 | static Scalar heatCapacity(const FluidState &fluidState, | |
583 | int phaseIdx) | ||
584 | { | ||
585 |
10/20✓ Branch 1 taken 3 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 3 times.
✗ Branch 5 not taken.
✓ Branch 7 taken 3 times.
✗ Branch 8 not taken.
✓ Branch 10 taken 3 times.
✗ Branch 11 not taken.
✓ Branch 13 taken 3 times.
✗ Branch 14 not taken.
✓ Branch 16 taken 3 times.
✗ Branch 17 not taken.
✓ Branch 19 taken 3 times.
✗ Branch 20 not taken.
✓ Branch 22 taken 3 times.
✗ Branch 23 not taken.
✓ Branch 25 taken 3 times.
✗ Branch 26 not taken.
✓ Branch 28 taken 3 times.
✗ Branch 29 not taken.
|
12 | DUNE_THROW(Dune::NotImplemented, "FluidSystems::H2OAirXylene::heatCapacity()"); |
586 | } | ||
587 | |||
588 | using Base<Scalar, ThisType>::thermalConductivity; | ||
589 | //! \copydoc Base<Scalar,ThisType>::thermalConductivity(const FluidState&,int) | ||
590 | template <class FluidState> | ||
591 |
2/2✓ Branch 0 taken 3296657 times.
✓ Branch 1 taken 6593314 times.
|
9889974 | static Scalar thermalConductivity(const FluidState &fluidState, |
592 | int phaseIdx) | ||
593 | { | ||
594 |
2/2✓ Branch 0 taken 3296657 times.
✓ Branch 1 taken 6593314 times.
|
9889974 | const Scalar temperature = fluidState.temperature(phaseIdx) ; |
595 | 9889974 | const Scalar pressure = fluidState.pressure(phaseIdx); | |
596 |
2/2✓ Branch 0 taken 3296658 times.
✓ Branch 1 taken 6593316 times.
|
9889974 | if (phaseIdx == wPhaseIdx) |
597 | { | ||
598 | 3296658 | return H2O::liquidThermalConductivity(temperature, pressure); | |
599 | } | ||
600 |
2/2✓ Branch 0 taken 3296658 times.
✓ Branch 1 taken 3296658 times.
|
6593316 | else if (phaseIdx == nPhaseIdx) |
601 | { | ||
602 | return NAPL::liquidThermalConductivity(temperature, pressure); | ||
603 | } | ||
604 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 3296658 times.
|
3296658 | else if (phaseIdx == gPhaseIdx) |
605 | { | ||
606 | return Air::gasThermalConductivity(temperature, pressure); | ||
607 | } | ||
608 | ✗ | DUNE_THROW(Dune::InvalidStateException, "Invalid phase index " << phaseIdx); | |
609 | } | ||
610 | |||
611 | private: | ||
612 | static Scalar waterPhaseDensity_(Scalar T, Scalar pw, Scalar xww, Scalar xwa, Scalar xwc) | ||
613 | { | ||
614 | Scalar rholH2O = H2O::liquidDensity(T, pw); | ||
615 | Scalar clH2O = rholH2O/H2O::molarMass(); | ||
616 | |||
617 | // this assumes each dissolved molecule displaces exactly one | ||
618 | // water molecule in the liquid | ||
619 | return | ||
620 | clH2O*(xww*H2O::molarMass() + xwa*Air::molarMass() + xwc*NAPL::molarMass()); | ||
621 | } | ||
622 | |||
623 | static Scalar gasPhaseDensity_(Scalar T, Scalar pg, Scalar xgw, Scalar xga, Scalar xgc) | ||
624 | { | ||
625 | return H2O::gasDensity(T, pg*xgw) + Air::gasDensity(T, pg*xga) + NAPL::gasDensity(T, pg*xgc); | ||
626 | } | ||
627 | |||
628 | static Scalar NAPLPhaseDensity_(Scalar T, Scalar pn) | ||
629 | { | ||
630 | return | ||
631 | NAPL::liquidDensity(T, pn); | ||
632 | } | ||
633 | |||
634 | }; | ||
635 | |||
636 | } // end namespace Dumux::FluidSystems | ||
637 | |||
638 | #endif | ||
639 |