Line | Branch | Exec | Source |
---|---|---|---|
1 | // -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- | ||
2 | // vi: set et ts=4 sw=4 sts=4: | ||
3 | // | ||
4 | // SPDX-FileCopyrightInfo: Copyright © DuMux Project contributors, see AUTHORS.md in root folder | ||
5 | // SPDX-License-Identifier: GPL-3.0-or-later | ||
6 | // | ||
7 | /*! | ||
8 | * \file | ||
9 | * \ingroup FluidSystems | ||
10 | * \brief @copybrief Dumux::FluidSystems::H2OHeavyOil | ||
11 | */ | ||
12 | #ifndef DUMUX_H2O_HEAVYOIL_FLUID_SYSTEM_HH | ||
13 | #define DUMUX_H2O_HEAVYOIL_FLUID_SYSTEM_HH | ||
14 | |||
15 | #include <dumux/material/idealgas.hh> | ||
16 | #include <dumux/material/components/h2o.hh> | ||
17 | #include <dumux/material/components/tabulatedcomponent.hh> | ||
18 | #include <dumux/material/components/heavyoil.hh> | ||
19 | |||
20 | #include <dumux/material/binarycoefficients/h2o_heavyoil.hh> | ||
21 | |||
22 | #include <dumux/material/fluidsystems/base.hh> | ||
23 | |||
24 | #include <dumux/io/name.hh> | ||
25 | |||
26 | namespace Dumux { | ||
27 | namespace FluidSystems { | ||
28 | |||
29 | /*! | ||
30 | * \ingroup FluidSystems | ||
31 | * \brief A compositional fluid system with water and heavy oil | ||
32 | * components in both the liquid and the gas phase. | ||
33 | */ | ||
34 | template <class Scalar, | ||
35 | class H2OType = Dumux::Components::TabulatedComponent<Dumux::Components::H2O<Scalar> > > | ||
36 | class H2OHeavyOil | ||
37 | : public Base<Scalar, H2OHeavyOil<Scalar, H2OType> > | ||
38 | { | ||
39 | using ThisType = H2OHeavyOil<Scalar, H2OType>; | ||
40 | |||
41 | public: | ||
42 | using HeavyOil = Dumux::Components::HeavyOil<Scalar>; | ||
43 | using H2O = H2OType; | ||
44 | |||
45 | |||
46 | static const int numPhases = 3; | ||
47 | static const int numComponents = 2; | ||
48 | |||
49 | static const int wPhaseIdx = 0; // index of the water phase | ||
50 | static const int nPhaseIdx = 1; // index of the NAPL phase | ||
51 | static const int gPhaseIdx = 2; // index of the gas phase | ||
52 | |||
53 | static const int H2OIdx = 0; | ||
54 | static const int NAPLIdx = 1; | ||
55 | |||
56 | // export component indices to indicate the main component | ||
57 | // of the corresponding phase at atmospheric pressure 1 bar | ||
58 | // and room temperature 20°C: | ||
59 | static const int wCompIdx = H2OIdx; | ||
60 | static const int nCompIdx = NAPLIdx; | ||
61 | |||
62 | /*! | ||
63 | * \brief Initialize the fluid system's static parameters generically | ||
64 | * | ||
65 | * If a tabulated H2O component is used, we do our best to create | ||
66 | * tables that always work. | ||
67 | */ | ||
68 | static void init() | ||
69 | { | ||
70 |
1/3✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
2 | init(/*tempMin=*/273.15, |
71 | /*tempMax=*/623.15, | ||
72 | /*numTemp=*/100, | ||
73 | /*pMin=*/0.0, | ||
74 | /*pMax=*/20e6, | ||
75 | /*numP=*/200); | ||
76 | } | ||
77 | |||
78 | /*! | ||
79 | * \brief Initialize the fluid system's static parameters using | ||
80 | * problem specific temperature and pressure ranges | ||
81 | * | ||
82 | * \param tempMin The minimum temperature used for tabulation of water [K] | ||
83 | * \param tempMax The maximum temperature used for tabulation of water [K] | ||
84 | * \param nTemp The number of ticks on the temperature axis of the table of water | ||
85 | * \param pressMin The minimum pressure used for tabulation of water [Pa] | ||
86 | * \param pressMax The maximum pressure used for tabulation of water [Pa] | ||
87 | * \param nPress The number of ticks on the pressure axis of the table of water | ||
88 | */ | ||
89 | static void init(Scalar tempMin, Scalar tempMax, unsigned nTemp, | ||
90 | Scalar pressMin, Scalar pressMax, unsigned nPress) | ||
91 | { | ||
92 | if (H2O::isTabulated) | ||
93 | { | ||
94 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
2 | H2O::init(tempMin, tempMax, nTemp, |
95 | pressMin, pressMax, nPress); | ||
96 | } | ||
97 | } | ||
98 | |||
99 | /*! | ||
100 | * \brief Get the main component of a given phase | ||
101 | * \param phaseIdx The index of the fluid phase to consider | ||
102 | */ | ||
103 | static constexpr int getMainComponent(int phaseIdx) | ||
104 | { | ||
105 | // For the gas phase, choosing a main component appears to be | ||
106 | // rather arbitrary. Motivated by the fact that the thermal conductivity | ||
107 | // of the gas phase is set to the thermal conductivity of pure water, | ||
108 | // water is chosen for now. | ||
109 |
6/6✓ Branch 0 taken 15974400 times.
✓ Branch 1 taken 7987200 times.
✓ Branch 2 taken 31948800 times.
✓ Branch 3 taken 15974400 times.
✓ Branch 4 taken 15974400 times.
✓ Branch 5 taken 7987200 times.
|
95846400 | if (phaseIdx == nPhaseIdx) |
110 | return nCompIdx; | ||
111 | else | ||
112 | return wCompIdx; | ||
113 | } | ||
114 | |||
115 | /*! | ||
116 | * \brief Returns whether the fluids are miscible | ||
117 | */ | ||
118 | static constexpr bool isMiscible() | ||
119 | { return true; } | ||
120 | |||
121 | /*! | ||
122 | * \brief Return whether a phase is gaseous | ||
123 | * | ||
124 | * \param phaseIdx The index of the fluid phase to consider | ||
125 | */ | ||
126 | static constexpr bool isGas(int phaseIdx) | ||
127 | { | ||
128 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 2 times.
|
2 | assert(0 <= phaseIdx && phaseIdx < numPhases); |
129 | return phaseIdx == gPhaseIdx; | ||
130 | } | ||
131 | |||
132 | /*! | ||
133 | * \brief Returns true if and only if a fluid phase is assumed to | ||
134 | * be an ideal gas. | ||
135 | * | ||
136 | * \param phaseIdx The index of the fluid phase to consider | ||
137 | */ | ||
138 | ✗ | static bool isIdealGas(int phaseIdx) | |
139 | ✗ | { return phaseIdx == gPhaseIdx && H2O::gasIsIdeal() && HeavyOil::gasIsIdeal(); } | |
140 | |||
141 | /*! | ||
142 | * \brief Returns true if and only if a fluid phase is assumed to | ||
143 | * be an ideal mixture. | ||
144 | * | ||
145 | * We define an ideal mixture as a fluid phase where the fugacity | ||
146 | * coefficients of all components times the pressure of the phase | ||
147 | * are independent on the fluid composition. This assumption is true | ||
148 | * if Henry's law and Raoult's law apply. If you are unsure what | ||
149 | * this function should return, it is safe to return false. The | ||
150 | * only damage done will be (slightly) increased computation times | ||
151 | * in some cases. | ||
152 | * | ||
153 | * \param phaseIdx The index of the fluid phase to consider | ||
154 | */ | ||
155 | static bool isIdealMixture(int phaseIdx) | ||
156 | { | ||
157 | assert(0 <= phaseIdx && phaseIdx < numPhases); | ||
158 | // we assume Henry's and Raoult's laws for the water phase and | ||
159 | // and no interaction between gas molecules of different | ||
160 | // components, so all phases are ideal mixtures! | ||
161 | return true; | ||
162 | } | ||
163 | |||
164 | /*! | ||
165 | * \brief Returns true if and only if a fluid phase is assumed to | ||
166 | * be compressible. | ||
167 | * | ||
168 | * Compressible means that the partial derivative of the density | ||
169 | * to the fluid pressure is always larger than zero. | ||
170 | * | ||
171 | * \param phaseIdx The index of the fluid phase to consider | ||
172 | */ | ||
173 | static constexpr bool isCompressible(int phaseIdx) | ||
174 | { | ||
175 | assert(0 <= phaseIdx && phaseIdx < numPhases); | ||
176 | // gases are always compressible | ||
177 | if (phaseIdx == gPhaseIdx) | ||
178 | return true; | ||
179 | else if (phaseIdx == wPhaseIdx) | ||
180 | // the water component decides for the water phase... | ||
181 | return H2O::liquidIsCompressible(); | ||
182 | |||
183 | // the NAPL component decides for the napl phase... | ||
184 | return HeavyOil::liquidIsCompressible(); | ||
185 | } | ||
186 | |||
187 | /*! | ||
188 | * \brief Return the human readable name of a phase (used in indices) | ||
189 | */ | ||
190 | 24 | static std::string phaseName(int phaseIdx) | |
191 | { | ||
192 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 24 times.
|
24 | assert(0 <= phaseIdx && phaseIdx < numPhases); |
193 |
3/4✓ Branch 0 taken 8 times.
✓ Branch 1 taken 8 times.
✓ Branch 2 taken 8 times.
✗ Branch 3 not taken.
|
24 | switch (phaseIdx) |
194 | { | ||
195 | 8 | case wPhaseIdx: return IOName::aqueousPhase(); | |
196 | 8 | case nPhaseIdx: return IOName::naplPhase(); | |
197 | 8 | case gPhaseIdx: return IOName::gaseousPhase(); | |
198 | } | ||
199 | ✗ | DUNE_THROW(Dune::InvalidStateException, "Invalid phase index " << phaseIdx); | |
200 | } | ||
201 | |||
202 | /*! | ||
203 | * \brief Return the human readable name of a component (used in indices) | ||
204 | */ | ||
205 | 8 | static std::string componentName(int compIdx) | |
206 | { | ||
207 |
2/3✓ Branch 0 taken 4 times.
✓ Branch 1 taken 4 times.
✗ Branch 2 not taken.
|
8 | switch (compIdx) { |
208 | 4 | case H2OIdx: return H2O::name(); | |
209 | 4 | case NAPLIdx: return HeavyOil::name(); | |
210 | }; | ||
211 | ✗ | DUNE_THROW(Dune::InvalidStateException, "Invalid component index " << compIdx); | |
212 | } | ||
213 | |||
214 | /*! | ||
215 | * \brief Return the molar mass of a component in [kg/mol]. | ||
216 | */ | ||
217 | 197738884 | static Scalar molarMass(int compIdx) | |
218 | { | ||
219 |
2/3✓ Branch 0 taken 114843842 times.
✗ Branch 1 not taken.
✓ Branch 2 taken 82895042 times.
|
197738884 | switch (compIdx) { |
220 | case H2OIdx: return H2O::molarMass(); | ||
221 | 114843842 | case NAPLIdx: return HeavyOil::molarMass(); | |
222 | }; | ||
223 | ✗ | DUNE_THROW(Dune::InvalidStateException, "Invalid component index " << compIdx); | |
224 | } | ||
225 | |||
226 | using Base<Scalar, ThisType>::density; | ||
227 | //! \copydoc Base<Scalar,ThisType>::density(const FluidState&,int) | ||
228 | template <class FluidState> | ||
229 | 11564843 | static Scalar density(const FluidState &fluidState, int phaseIdx) | |
230 | { | ||
231 |
2/2✓ Branch 0 taken 3854949 times.
✓ Branch 1 taken 7709894 times.
|
11564843 | if (phaseIdx == wPhaseIdx) { |
232 | // See: doctoral thesis of Steffen Ochs 2007 | ||
233 | // Steam injection into saturated porous media : process analysis including experimental and numerical investigations | ||
234 | // http://elib.uni-stuttgart.de/bitstream/11682/271/1/Diss_Ochs_OPUS.pdf | ||
235 | |||
236 | // This assumes each gas molecule displaces exactly one | ||
237 | // molecule in the liquid. | ||
238 | |||
239 | 11564845 | return H2O::liquidMolarDensity(fluidState.temperature(phaseIdx), fluidState.pressure(phaseIdx)) | |
240 | 3854947 | * (H2O::molarMass()*fluidState.moleFraction(wPhaseIdx, H2OIdx) | |
241 | 7709893 | + HeavyOil::molarMass()*fluidState.moleFraction(wPhaseIdx, NAPLIdx)); | |
242 | } | ||
243 |
2/2✓ Branch 0 taken 3854947 times.
✓ Branch 1 taken 3854947 times.
|
7709894 | else if (phaseIdx == nPhaseIdx) { |
244 | // assume pure NAPL for the NAPL phase | ||
245 | 3854947 | Scalar pressure = HeavyOil::liquidIsCompressible()?fluidState.pressure(phaseIdx):1e100; | |
246 | 11564839 | return HeavyOil::liquidDensity(fluidState.temperature(phaseIdx), pressure); | |
247 | } | ||
248 | |||
249 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 3854947 times.
|
3854947 | assert (phaseIdx == gPhaseIdx); |
250 | 3854947 | Scalar pH2O = | |
251 | 7709893 | fluidState.moleFraction(gPhaseIdx, H2OIdx) * | |
252 | fluidState.pressure(gPhaseIdx); | ||
253 | 3854947 | Scalar pNAPL = | |
254 | 7709893 | fluidState.moleFraction(gPhaseIdx, NAPLIdx) * | |
255 | fluidState.pressure(gPhaseIdx); | ||
256 | 7709893 | return H2O::gasDensity(fluidState.temperature(phaseIdx), pH2O) | |
257 | 11564839 | + HeavyOil::gasDensity(fluidState.temperature(phaseIdx), pNAPL); | |
258 | } | ||
259 | |||
260 | using Base<Scalar, ThisType>::molarDensity; | ||
261 | //! \copydoc Base<Scalar,ThisType>::molarDensity(const FluidState&,int) | ||
262 | template <class FluidState> | ||
263 | 7709895 | static Scalar molarDensity(const FluidState &fluidState, int phaseIdx) | |
264 | { | ||
265 |
2/2✓ Branch 0 taken 3854946 times.
✓ Branch 1 taken 3854946 times.
|
11564841 | Scalar temperature = fluidState.temperature(phaseIdx); |
266 |
2/2✓ Branch 0 taken 3854946 times.
✓ Branch 1 taken 3854946 times.
|
11564841 | Scalar pressure = fluidState.pressure(phaseIdx); |
267 |
2/2✓ Branch 0 taken 3854947 times.
✓ Branch 1 taken 3854948 times.
|
7709895 | if (phaseIdx == nPhaseIdx) |
268 | { | ||
269 | 7709894 | return HeavyOil::liquidMolarDensity(temperature, pressure); | |
270 | } | ||
271 |
2/2✓ Branch 0 taken 1 times.
✓ Branch 1 taken 3854947 times.
|
3854948 | else if (phaseIdx == wPhaseIdx) |
272 | { // This assumes each gas molecule displaces exactly one | ||
273 | // molecule in the liquid. | ||
274 | 3854947 | return H2O::liquidMolarDensity(temperature, pressure); | |
275 | } | ||
276 | else | ||
277 | { | ||
278 | 7709893 | return H2O::gasMolarDensity(temperature, fluidState.partialPressure(gPhaseIdx, H2OIdx)) | |
279 | 11564839 | + HeavyOil::gasMolarDensity(temperature, fluidState.partialPressure(gPhaseIdx, NAPLIdx)); | |
280 | } | ||
281 | } | ||
282 | |||
283 | using Base<Scalar, ThisType>::viscosity; | ||
284 | //! \copydoc Base<Scalar,ThisType>::viscosity(const FluidState&,int) | ||
285 | template <class FluidState> | ||
286 | 11564841 | static Scalar viscosity(const FluidState &fluidState, | |
287 | int phaseIdx) | ||
288 | { | ||
289 |
2/2✓ Branch 0 taken 3854947 times.
✓ Branch 1 taken 7709894 times.
|
11564841 | if (phaseIdx == wPhaseIdx) { |
290 | // assume pure water viscosity | ||
291 | 11564839 | return H2O::liquidViscosity(fluidState.temperature(phaseIdx), | |
292 | fluidState.pressure(phaseIdx)); | ||
293 | } | ||
294 |
2/2✓ Branch 0 taken 3854947 times.
✓ Branch 1 taken 3854947 times.
|
7709894 | else if (phaseIdx == nPhaseIdx) { |
295 | // assume pure NAPL viscosity | ||
296 | 11564839 | return HeavyOil::liquidViscosity(fluidState.temperature(phaseIdx), | |
297 | 3854947 | fluidState.pressure(phaseIdx)); | |
298 | } | ||
299 | |||
300 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 3854947 times.
|
3854947 | assert (phaseIdx == gPhaseIdx); |
301 | |||
302 | /* Wilke method. See: | ||
303 | * | ||
304 | * See: R. Reid, et al.: The Properties of Gases and Liquids, | ||
305 | * 4th edition, McGraw-Hill, 1987, 407-410 | ||
306 | * 5th edition, McGraw-Hill, 20001, p. 9.21/22 | ||
307 | * | ||
308 | * in this case, we use a simplified version in order to avoid | ||
309 | * computationally costly evaluation of sqrt and pow functions and | ||
310 | * divisions | ||
311 | * -- compare e.g. with Promo Class p. 32/33 | ||
312 | */ | ||
313 | 7709894 | const Scalar mu[numComponents] = { | |
314 | 11564839 | h2oGasViscosityInMixture(fluidState.temperature(phaseIdx), fluidState.pressure(phaseIdx)), | |
315 | 15419785 | HeavyOil::gasViscosity(fluidState.temperature(phaseIdx), HeavyOil::vaporPressure(fluidState.temperature(phaseIdx))) | |
316 | }; | ||
317 | |||
318 | 3854947 | return mu[H2OIdx]*fluidState.moleFraction(gPhaseIdx, H2OIdx) | |
319 | 7709893 | + mu[NAPLIdx]*fluidState.moleFraction(gPhaseIdx, NAPLIdx); | |
320 | } | ||
321 | |||
322 | using Base<Scalar, ThisType>::binaryDiffusionCoefficient; | ||
323 | /*! | ||
324 | * \brief Given a phase's composition, temperature and pressure, | ||
325 | * return the binary diffusion coefficient \f$\mathrm{[m^2/s]}\f$ for components | ||
326 | * \f$\mathrm{i}\f$ and \f$\mathrm{j}\f$ in this phase. | ||
327 | * | ||
328 | * Be aware that in this case there are only two components in three phases. | ||
329 | * Therefore, we assume the diffusion to simply be the binary diffusion coefficients. | ||
330 | * This was previously implemented in diffusionCoefficient(), but is now moved. | ||
331 | * | ||
332 | * \param fluidState The fluid state | ||
333 | * \param phaseIdx Index of the fluid phase | ||
334 | * \param compIIdx Index of the component i | ||
335 | * \param compJIdx Index of the component j | ||
336 | */ | ||
337 | template <class FluidState> | ||
338 | 7709904 | static Scalar binaryDiffusionCoefficient(const FluidState &fluidState, | |
339 | int phaseIdx, | ||
340 | int compIIdx, | ||
341 | int compJIdx) | ||
342 | |||
343 | { | ||
344 |
2/2✓ Branch 0 taken 3854946 times.
✓ Branch 1 taken 3854946 times.
|
7709904 | const Scalar T = fluidState.temperature(phaseIdx); |
345 |
2/2✓ Branch 0 taken 3854946 times.
✓ Branch 1 taken 3854946 times.
|
7709904 | const Scalar p = fluidState.pressure(phaseIdx); |
346 | |||
347 | // liquid phase | ||
348 |
2/2✓ Branch 0 taken 3854954 times.
✓ Branch 1 taken 3854950 times.
|
7709904 | if (phaseIdx == wPhaseIdx) |
349 | return BinaryCoeff::H2O_HeavyOil::liquidDiffCoeff(T, p); | ||
350 | |||
351 | // gas phase | ||
352 |
2/2✓ Branch 0 taken 4 times.
✓ Branch 1 taken 3854950 times.
|
3854954 | else if (phaseIdx == gPhaseIdx) |
353 | return BinaryCoeff::H2O_HeavyOil::gasDiffCoeff(T, p); | ||
354 | else | ||
355 |
7/16✓ Branch 2 taken 4 times.
✗ Branch 3 not taken.
✓ Branch 11 taken 4 times.
✗ Branch 12 not taken.
✓ Branch 16 taken 4 times.
✗ Branch 17 not taken.
✓ Branch 19 taken 4 times.
✗ Branch 20 not taken.
✓ Branch 22 taken 4 times.
✗ Branch 23 not taken.
✓ Branch 24 taken 4 times.
✗ Branch 25 not taken.
✗ Branch 27 not taken.
✓ Branch 28 taken 4 times.
✗ Branch 30 not taken.
✗ Branch 31 not taken.
|
48 | DUNE_THROW(Dune::InvalidStateException, |
356 | "Non-existent binary diffusion coefficient for phase index " | ||
357 | << phaseIdx); | ||
358 | } | ||
359 | |||
360 | using Base<Scalar, ThisType>::diffusionCoefficient; | ||
361 | /*! | ||
362 | * \brief Calculate the molecular diffusion coefficient for | ||
363 | * a component in a fluid phase \f$\mathrm{[mol^2 * s / (kg*m^3)]}\f$ | ||
364 | * \param fluidState The fluid state | ||
365 | * \param phaseIdx Index of the fluid phase | ||
366 | * \todo This signature does not match the base fluid system's signature, | ||
367 | * which takes an additional component index. | ||
368 | */ | ||
369 | template <class FluidState> | ||
370 | 7709892 | static Scalar diffusionCoefficient(const FluidState &fluidState, int phaseIdx) | |
371 | { | ||
372 | // liquid phase | ||
373 |
2/2✓ Branch 0 taken 3854946 times.
✓ Branch 1 taken 3854946 times.
|
7709892 | if (phaseIdx == wPhaseIdx) |
374 | 3854946 | return binaryDiffusionCoefficient(fluidState, phaseIdx, H2OIdx, NAPLIdx); | |
375 | // gas phase | ||
376 |
1/2✓ Branch 0 taken 3854946 times.
✗ Branch 1 not taken.
|
3854946 | else if (phaseIdx == gPhaseIdx) |
377 | 3854946 | return binaryDiffusionCoefficient(fluidState, phaseIdx, NAPLIdx, H2OIdx); | |
378 | else | ||
379 | ✗ | DUNE_THROW(Dune::InvalidStateException, | |
380 | "Non-existent diffusion coefficient for phase index "<< phaseIdx); | ||
381 | } | ||
382 | |||
383 | /*! | ||
384 | * \brief Henry coefficients \f$[N/m^2]\f$ of a component in a phase. | ||
385 | * \param fluidState An arbitrary fluid state | ||
386 | * \param phaseIdx The index of the phase to consider | ||
387 | * \param compIdx The index of the component to consider | ||
388 | */ | ||
389 | template <class FluidState> | ||
390 | static Scalar henryCoefficient(const FluidState &fluidState, | ||
391 | int phaseIdx, | ||
392 | int compIdx) | ||
393 | { | ||
394 | assert(0 <= phaseIdx && phaseIdx < numPhases); | ||
395 | assert(0 <= compIdx && compIdx < numComponents); | ||
396 | |||
397 | const Scalar T = fluidState.temperature(phaseIdx); | ||
398 | |||
399 | if (compIdx == NAPLIdx && phaseIdx == wPhaseIdx) | ||
400 | return Dumux::BinaryCoeff::H2O_HeavyOil::henryOilInWater(T); | ||
401 | |||
402 | else if (phaseIdx == nPhaseIdx && compIdx == H2OIdx) | ||
403 | return Dumux::BinaryCoeff::H2O_HeavyOil::henryWaterInOil(T); | ||
404 | |||
405 | else | ||
406 | DUNE_THROW(Dune::InvalidStateException, "non-existent henry coefficient for phase index " << phaseIdx | ||
407 | << " and component index " << compIdx); | ||
408 | } | ||
409 | |||
410 | /*! | ||
411 | * \brief Partial pressures in the gas phase, taken from saturation vapor pressures. | ||
412 | * \param fluidState An arbitrary fluid state | ||
413 | * \param phaseIdx The index of the phase to consider | ||
414 | * \param compIdx The index of the component to consider | ||
415 | */ | ||
416 | template <class FluidState> | ||
417 | 7712470 | static Scalar partialPressureGas(const FluidState &fluidState, int phaseIdx, | |
418 | int compIdx) | ||
419 | { | ||
420 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 7712470 times.
|
7712470 | assert(0 <= compIdx && compIdx < numComponents); |
421 | |||
422 |
2/2✓ Branch 0 taken 3856050 times.
✓ Branch 1 taken 3856420 times.
|
7712470 | const Scalar T = fluidState.temperature(phaseIdx); |
423 |
2/2✓ Branch 0 taken 3856050 times.
✓ Branch 1 taken 3856420 times.
|
7712470 | if (compIdx == NAPLIdx) |
424 | 7712100 | return HeavyOil::vaporPressure(T); | |
425 | else if (compIdx == H2OIdx) | ||
426 | 3856420 | return H2O::vaporPressure(T); | |
427 | else | ||
428 | DUNE_THROW(Dune::InvalidStateException, "non-existent component index " << compIdx); | ||
429 | } | ||
430 | |||
431 | /*! | ||
432 | * \brief Inverse vapor pressures, taken from inverse saturation vapor pressures | ||
433 | * \param fluidState An arbitrary fluid state | ||
434 | * \param phaseIdx The index of the phase to consider | ||
435 | * \param compIdx The index of the component to consider | ||
436 | */ | ||
437 | template <class FluidState> | ||
438 | 750 | static Scalar inverseVaporPressureCurve(const FluidState &fluidState, | |
439 | int phaseIdx, | ||
440 | int compIdx) | ||
441 | { | ||
442 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 750 times.
|
750 | assert(0 <= compIdx && compIdx < numComponents); |
443 | |||
444 |
2/2✓ Branch 0 taken 370 times.
✓ Branch 1 taken 380 times.
|
750 | const Scalar pressure = fluidState.pressure(phaseIdx); |
445 |
2/2✓ Branch 0 taken 370 times.
✓ Branch 1 taken 380 times.
|
750 | if (compIdx == NAPLIdx) |
446 | 740 | return HeavyOil::vaporTemperature(pressure); | |
447 | else if (compIdx == H2OIdx) | ||
448 | 760 | return H2O::vaporTemperature(pressure); | |
449 | else | ||
450 | DUNE_THROW(Dune::InvalidStateException, "non-existent component index " << compIdx); | ||
451 | } | ||
452 | |||
453 | using Base<Scalar, ThisType>::enthalpy; | ||
454 | /*! | ||
455 | * \brief Given all mole fractions in a phase, return the specific | ||
456 | * phase enthalpy\f$\mathrm{[J/kg]}\f$. | ||
457 | * \param fluidState An arbitrary fluid state | ||
458 | * \param phaseIdx The index of the phase to consider | ||
459 | * \todo This system neglects the contribution of gas-molecules in the liquid phase. | ||
460 | * This contribution is probably not big. | ||
461 | * Somebody would have to find out the enthalpy of solution for this system. ... | ||
462 | */ | ||
463 | template <class FluidState> | ||
464 | 11564841 | static Scalar enthalpy(const FluidState &fluidState, | |
465 | int phaseIdx) | ||
466 | { | ||
467 |
2/2✓ Branch 0 taken 3854947 times.
✓ Branch 1 taken 7709894 times.
|
11564841 | if (phaseIdx == wPhaseIdx) { |
468 | 11564839 | return H2O::liquidEnthalpy(fluidState.temperature(phaseIdx), fluidState.pressure(phaseIdx)); | |
469 | } | ||
470 |
2/2✓ Branch 0 taken 3854947 times.
✓ Branch 1 taken 3854947 times.
|
7709894 | else if (phaseIdx == nPhaseIdx) { |
471 | 15419785 | return HeavyOil::liquidEnthalpy(fluidState.temperature(phaseIdx), fluidState.pressure(phaseIdx)); | |
472 | } | ||
473 |
1/2✓ Branch 0 taken 3854947 times.
✗ Branch 1 not taken.
|
3854947 | else if (phaseIdx == gPhaseIdx) { // gas phase enthalpy depends strongly on composition |
474 | 11564839 | Scalar hgc = HeavyOil::gasEnthalpy(fluidState.temperature(phaseIdx), | |
475 | fluidState.pressure(phaseIdx)); | ||
476 | 11564839 | Scalar hgw = H2O::gasEnthalpy(fluidState.temperature(phaseIdx), | |
477 | fluidState.pressure(phaseIdx)); | ||
478 | |||
479 | 3854947 | Scalar result = 0; | |
480 | 3854947 | result += hgw * fluidState.massFraction(gPhaseIdx, H2OIdx); | |
481 | 3854947 | result += hgc * fluidState.massFraction(gPhaseIdx, NAPLIdx); | |
482 | |||
483 | 3854947 | return result; | |
484 | } | ||
485 | ✗ | DUNE_THROW(Dune::InvalidStateException, "Invalid phase index " << phaseIdx); | |
486 | } | ||
487 | |||
488 | /*! | ||
489 | * \brief Returns the specific enthalpy \f$\mathrm{[J/kg]}\f$ of a component in a specific phase | ||
490 | * \param fluidState The fluid state | ||
491 | * \param phaseIdx The index of the phase | ||
492 | * \param componentIdx The index of the component | ||
493 | */ | ||
494 | template <class FluidState> | ||
495 | static Scalar componentEnthalpy(const FluidState& fluidState, int phaseIdx, int componentIdx) | ||
496 | { | ||
497 | const Scalar T = fluidState.temperature(phaseIdx); | ||
498 | const Scalar p = fluidState.pressure(phaseIdx); | ||
499 | |||
500 | if (phaseIdx == wPhaseIdx) | ||
501 | { | ||
502 | if (componentIdx == H2OIdx) | ||
503 | return H2O::liquidEnthalpy(T, p); | ||
504 | else if (componentIdx == NAPLIdx) | ||
505 | DUNE_THROW(Dune::NotImplemented, "The component enthalpy for NAPL in water is not implemented."); | ||
506 | DUNE_THROW(Dune::InvalidStateException, "Invalid component index " << componentIdx); | ||
507 | } | ||
508 | else if (phaseIdx == nPhaseIdx) | ||
509 | { | ||
510 | if (componentIdx == H2OIdx) | ||
511 | DUNE_THROW(Dune::NotImplemented, "The component enthalpy for water in NAPL is not implemented."); | ||
512 | else if (componentIdx == NAPLIdx) | ||
513 | return HeavyOil::liquidEnthalpy(T, p); | ||
514 | DUNE_THROW(Dune::InvalidStateException, "Invalid component index " << componentIdx); | ||
515 | } | ||
516 | else if (phaseIdx == gPhaseIdx) | ||
517 | { | ||
518 | if (componentIdx == H2OIdx) | ||
519 | return H2O::gasEnthalpy(T, p); | ||
520 | else if (componentIdx == NAPLIdx) | ||
521 | return HeavyOil::gasEnthalpy(T, p); | ||
522 | DUNE_THROW(Dune::InvalidStateException, "Invalid component index " << componentIdx); | ||
523 | } | ||
524 | DUNE_THROW(Dune::InvalidStateException, "Invalid phase index " << phaseIdx); | ||
525 | } | ||
526 | |||
527 | using Base<Scalar, ThisType>::heatCapacity; | ||
528 | //! \copydoc Base<Scalar,ThisType>::heatCapacity(const FluidState&,int) | ||
529 | template <class FluidState> | ||
530 | 3 | static Scalar heatCapacity(const FluidState &fluidState, | |
531 | int phaseIdx) | ||
532 | { | ||
533 |
7/16✓ Branch 2 taken 3 times.
✗ Branch 3 not taken.
✓ Branch 11 taken 3 times.
✗ Branch 12 not taken.
✓ Branch 15 taken 3 times.
✗ Branch 16 not taken.
✓ Branch 18 taken 3 times.
✗ Branch 19 not taken.
✓ Branch 21 taken 3 times.
✗ Branch 22 not taken.
✓ Branch 23 taken 3 times.
✗ Branch 24 not taken.
✗ Branch 26 not taken.
✓ Branch 27 taken 3 times.
✗ Branch 29 not taken.
✗ Branch 30 not taken.
|
33 | DUNE_THROW(Dune::NotImplemented, "FluidSystems::H2ONAPL::heatCapacity()"); |
534 | } | ||
535 | |||
536 | using Base<Scalar, ThisType>::thermalConductivity; | ||
537 | /*! | ||
538 | * \brief Thermal conductivity of a fluid phase \f$\mathrm{[W/(m K)]}\f$. | ||
539 | * | ||
540 | * Use the conductivity of water (wPhase and gPhase) and oil (nPhase) as a first approximation. | ||
541 | * | ||
542 | * \param fluidState An arbitrary fluid state | ||
543 | * \param phaseIdx The index of the fluid phase to consider | ||
544 | */ | ||
545 | template <class FluidState> | ||
546 | 11564841 | static Scalar thermalConductivity(const FluidState &fluidState, | |
547 | int phaseIdx) | ||
548 | { | ||
549 |
2/2✓ Branch 0 taken 3854946 times.
✓ Branch 1 taken 7709892 times.
|
11564841 | const Scalar temperature = fluidState.temperature(phaseIdx) ; |
550 |
2/2✓ Branch 0 taken 3854946 times.
✓ Branch 1 taken 7709892 times.
|
11564841 | const Scalar pressure = fluidState.pressure(phaseIdx); |
551 |
2/2✓ Branch 0 taken 3854947 times.
✓ Branch 1 taken 7709894 times.
|
11564841 | if (phaseIdx == wPhaseIdx) |
552 | { | ||
553 | 3854947 | return H2O::liquidThermalConductivity(temperature, pressure); | |
554 | } | ||
555 |
2/2✓ Branch 0 taken 3854947 times.
✓ Branch 1 taken 3854947 times.
|
7709894 | else if (phaseIdx == nPhaseIdx) |
556 | { | ||
557 | return HeavyOil::liquidThermalConductivity(temperature, pressure); | ||
558 | } | ||
559 |
1/2✓ Branch 0 taken 3854947 times.
✗ Branch 1 not taken.
|
3854947 | else if (phaseIdx == gPhaseIdx) |
560 | { | ||
561 | 3854947 | return H2O::gasThermalConductivity(temperature, pressure); | |
562 | } | ||
563 | ✗ | DUNE_THROW(Dune::InvalidStateException, "Invalid phase index " << phaseIdx); | |
564 | } | ||
565 | |||
566 | }; | ||
567 | } // end namespace FluidSystems | ||
568 | } // end namespace Dumux | ||
569 | |||
570 | #endif | ||
571 |