Line | Branch | Exec | Source |
---|---|---|---|
1 | // -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- | ||
2 | // vi: set et ts=4 sw=4 sts=4: | ||
3 | // | ||
4 | // SPDX-FileCopyrightInfo: Copyright © DuMux Project contributors, see AUTHORS.md in root folder | ||
5 | // SPDX-License-Identifier: GPL-3.0-or-later | ||
6 | // | ||
7 | /*! | ||
8 | * \file | ||
9 | * \ingroup FluidSystems | ||
10 | * \copybrief Dumux::FluidSystems::H2ON2 | ||
11 | */ | ||
12 | #ifndef DUMUX_H2O_N2_FLUID_SYSTEM_HH | ||
13 | #define DUMUX_H2O_N2_FLUID_SYSTEM_HH | ||
14 | |||
15 | #include <cassert> | ||
16 | #include <iomanip> | ||
17 | |||
18 | #include <dumux/common/exceptions.hh> | ||
19 | |||
20 | #include <dumux/material/idealgas.hh> | ||
21 | |||
22 | #include <dumux/material/components/n2.hh> | ||
23 | #include <dumux/material/components/h2o.hh> | ||
24 | #include <dumux/material/components/tabulatedcomponent.hh> | ||
25 | #include <dumux/material/binarycoefficients/h2o_n2.hh> | ||
26 | |||
27 | #include <dumux/io/name.hh> | ||
28 | |||
29 | #include "base.hh" | ||
30 | |||
31 | namespace Dumux { | ||
32 | namespace FluidSystems { | ||
33 | |||
34 | /*! | ||
35 | * \ingroup FluidSystems | ||
36 | * \brief Policy for the H2O-N2 fluid system | ||
37 | */ | ||
38 | template<bool fastButSimplifiedRelations = false> | ||
39 | struct H2ON2DefaultPolicy | ||
40 | { | ||
41 | static constexpr bool useH2ODensityAsLiquidMixtureDensity() { return fastButSimplifiedRelations; } | ||
42 | static constexpr bool useIdealGasDensity() { return fastButSimplifiedRelations; } | ||
43 | static constexpr bool useN2ViscosityAsGasMixtureViscosity() { return fastButSimplifiedRelations; } | ||
44 | static constexpr bool useN2HeatConductivityAsGasMixtureHeatConductivity() { return fastButSimplifiedRelations; } | ||
45 | static constexpr bool useIdealGasHeatCapacities() { return fastButSimplifiedRelations; } | ||
46 | }; | ||
47 | |||
48 | /*! | ||
49 | * \ingroup FluidSystems | ||
50 | * | ||
51 | * \brief A two-phase fluid system with two components water \f$(\mathrm{H_2O})\f$ | ||
52 | * Nitrogen \f$(\mathrm{N_2})\f$ for non-equilibrium models. | ||
53 | */ | ||
54 | template <class Scalar, class Policy = H2ON2DefaultPolicy<>> | ||
55 | class H2ON2 | ||
56 | : public Base<Scalar, H2ON2<Scalar, Policy> > | ||
57 | { | ||
58 | using ThisType = H2ON2<Scalar, Policy>; | ||
59 | |||
60 | // convenience aliases using declarations | ||
61 | using IdealGas = Dumux::IdealGas<Scalar>; | ||
62 | using TabulatedH2O = Components::TabulatedComponent<Dumux::Components::H2O<Scalar> >; | ||
63 | using SimpleN2 = Dumux::Components::N2<Scalar>; | ||
64 | |||
65 | public: | ||
66 | using H2O = TabulatedH2O; //!< The component for pure water | ||
67 | using N2 = SimpleN2; //!< The component for pure nitrogen | ||
68 | |||
69 | static constexpr int numPhases = 2; //!< Number of phases in the fluid system | ||
70 | static constexpr int numComponents = 2; //!< Number of components in the fluid system | ||
71 | |||
72 | static constexpr int liquidPhaseIdx = 0; //!< index of the liquid phase | ||
73 | static constexpr int gasPhaseIdx = 1; //!< index of the gas phase | ||
74 | static constexpr int phase0Idx = liquidPhaseIdx; //!< index of the first phase | ||
75 | static constexpr int phase1Idx = gasPhaseIdx; //!< index of the second phase | ||
76 | |||
77 | static constexpr int H2OIdx = 0; | ||
78 | static constexpr int N2Idx = 1; | ||
79 | static constexpr int comp0Idx = H2OIdx; //!< index of the first component | ||
80 | static constexpr int comp1Idx = N2Idx; //!< index of the second component | ||
81 | static constexpr int liquidCompIdx = H2OIdx; //!< index of the liquid component | ||
82 | static constexpr int gasCompIdx = N2Idx; //!< index of the gas component | ||
83 | |||
84 | /**************************************** | ||
85 | * Fluid phase related static parameters | ||
86 | ****************************************/ | ||
87 | /*! | ||
88 | * \brief Return the human readable name of a fluid phase | ||
89 | * | ||
90 | * \param phaseIdx The index of the fluid phase to consider | ||
91 | */ | ||
92 | 1132 | static std::string phaseName(int phaseIdx) | |
93 | { | ||
94 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1124 times.
|
1132 | assert(0 <= phaseIdx && phaseIdx < numPhases); |
95 |
2/3✓ Branch 0 taken 921 times.
✓ Branch 1 taken 203 times.
✗ Branch 2 not taken.
|
1132 | switch (phaseIdx) |
96 | { | ||
97 | 925 | case liquidPhaseIdx: return IOName::liquidPhase(); | |
98 | 207 | case gasPhaseIdx: return IOName::gaseousPhase(); | |
99 | } | ||
100 | ✗ | DUNE_THROW(Dune::InvalidStateException, "Invalid phase index " << phaseIdx); | |
101 | } | ||
102 | |||
103 | /*! | ||
104 | * \brief Returns whether the fluids are miscible | ||
105 | */ | ||
106 | static constexpr bool isMiscible() | ||
107 | { return true; } | ||
108 | |||
109 | /*! | ||
110 | * \brief Return whether a phase is gaseous | ||
111 | * | ||
112 | * \param phaseIdx The index of the fluid phase to consider | ||
113 | */ | ||
114 | static constexpr bool isGas(int phaseIdx) | ||
115 | { | ||
116 |
2/4✗ Branch 0 not taken.
✓ Branch 1 taken 99332 times.
✗ Branch 3 not taken.
✓ Branch 4 taken 4 times.
|
99336 | assert(0 <= phaseIdx && phaseIdx < numPhases); |
117 | return phaseIdx == gasPhaseIdx; | ||
118 | } | ||
119 | |||
120 | /*! | ||
121 | * \brief Returns true if and only if a fluid phase is assumed to | ||
122 | * be an ideal mixture. | ||
123 | * | ||
124 | * We define an ideal mixture as a fluid phase where the fugacity | ||
125 | * coefficients of all components times the pressure of the phase | ||
126 | * are independent on the fluid composition. This assumption is true | ||
127 | * if Henry's law and Raoult's law apply. If you are unsure what | ||
128 | * this function should return, it is safe to return false. The | ||
129 | * only damage done will be (slightly) increased computation times | ||
130 | * in some cases. | ||
131 | * | ||
132 | * \param phaseIdx The index of the fluid phase to consider | ||
133 | */ | ||
134 | static bool isIdealMixture(int phaseIdx) | ||
135 | { | ||
136 |
2/6✗ Branch 0 not taken.
✓ Branch 1 taken 14965087 times.
✗ Branch 3 not taken.
✗ Branch 4 not taken.
✗ Branch 6 not taken.
✓ Branch 7 taken 12577487 times.
|
27542574 | assert(0 <= phaseIdx && phaseIdx < numPhases); |
137 | // we assume Henry's and Raoult's laws for the water phase and | ||
138 | // and no interaction between gas molecules of different | ||
139 | // components, so all phases are ideal mixtures! | ||
140 | return true; | ||
141 | } | ||
142 | |||
143 | /*! | ||
144 | * \brief Returns true if and only if a fluid phase is assumed to | ||
145 | * be compressible. | ||
146 | * | ||
147 | * Compressible means that the partial derivative of the density | ||
148 | * to the fluid pressure is always larger than zero. | ||
149 | * | ||
150 | * \param phaseIdx The index of the fluid phase to consider | ||
151 | */ | ||
152 | static constexpr bool isCompressible(int phaseIdx) | ||
153 | { | ||
154 | assert(0 <= phaseIdx && phaseIdx < numPhases); | ||
155 | // gases are always compressible | ||
156 | if (phaseIdx == gasPhaseIdx) | ||
157 | return true; | ||
158 | // the water component decides for the liquid phase... | ||
159 | return H2O::liquidIsCompressible(); | ||
160 | } | ||
161 | |||
162 | /*! | ||
163 | * \brief Returns true if and only if a fluid phase is assumed to | ||
164 | * be an ideal gas. | ||
165 | * | ||
166 | * \param phaseIdx The index of the fluid phase to consider | ||
167 | */ | ||
168 | static bool isIdealGas(int phaseIdx) | ||
169 | { | ||
170 | assert(0 <= phaseIdx && phaseIdx < numPhases); | ||
171 | |||
172 | if (phaseIdx == gasPhaseIdx) | ||
173 | // let the components decide | ||
174 | return H2O::gasIsIdeal() && N2::gasIsIdeal(); | ||
175 | return false; // not a gas | ||
176 | } | ||
177 | |||
178 | /**************************************** | ||
179 | * Component related static parameters | ||
180 | ****************************************/ | ||
181 | /*! | ||
182 | * \brief Return the human readable name of a component | ||
183 | * | ||
184 | * \param compIdx The index of the component to consider | ||
185 | */ | ||
186 | 368 | static std::string componentName(int compIdx) | |
187 | { | ||
188 |
2/3✓ Branch 0 taken 181 times.
✓ Branch 1 taken 179 times.
✗ Branch 2 not taken.
|
368 | switch (compIdx) |
189 | { | ||
190 | 185 | case H2OIdx: return H2O::name(); | |
191 | 183 | case N2Idx: return N2::name(); | |
192 | } | ||
193 | |||
194 | ✗ | DUNE_THROW(Dune::InvalidStateException, "Invalid component index " << compIdx); | |
195 | } | ||
196 | |||
197 | /*! | ||
198 | * \brief Return the molar mass of a component in \f$\mathrm{[kg/mol]}\f$. | ||
199 | * | ||
200 | * \param compIdx The index of the component to consider | ||
201 | */ | ||
202 | static Scalar molarMass(int compIdx) | ||
203 | { | ||
204 | static const Scalar M[] = { | ||
205 | H2O::molarMass(), | ||
206 | N2::molarMass(), | ||
207 | }; | ||
208 | |||
209 |
5/14✗ Branch 0 not taken.
✓ Branch 1 taken 508295922 times.
✗ Branch 3 not taken.
✓ Branch 4 taken 62800036 times.
✗ Branch 6 not taken.
✓ Branch 7 taken 7530982 times.
✗ Branch 9 not taken.
✓ Branch 10 taken 2 times.
✗ Branch 12 not taken.
✗ Branch 13 not taken.
✗ Branch 15 not taken.
✗ Branch 16 not taken.
✗ Branch 18 not taken.
✓ Branch 19 taken 7 times.
|
578626949 | assert(0 <= compIdx && compIdx < numComponents); |
210 |
7/11✓ Branch 0 taken 21451240 times.
✓ Branch 1 taken 2 times.
✓ Branch 2 taken 41348792 times.
✓ Branch 3 taken 2 times.
✗ Branch 4 not taken.
✓ Branch 6 taken 2 times.
✗ Branch 7 not taken.
✓ Branch 9 taken 2 times.
✗ Branch 10 not taken.
✓ Branch 12 taken 2 times.
✗ Branch 13 not taken.
|
559668610 | return M[compIdx]; |
211 | } | ||
212 | |||
213 | /*! | ||
214 | * \brief Critical temperature of a component \f$\mathrm{[K]}\f$. | ||
215 | * | ||
216 | * \param compIdx The index of the component to consider | ||
217 | */ | ||
218 | static Scalar criticalTemperature(int compIdx) | ||
219 | { | ||
220 | static const Scalar Tcrit[] = { | ||
221 | H2O::criticalTemperature(), | ||
222 | N2::criticalTemperature() | ||
223 | }; | ||
224 | |||
225 | assert(0 <= compIdx && compIdx < numComponents); | ||
226 | return Tcrit[compIdx]; | ||
227 | } | ||
228 | |||
229 | /*! | ||
230 | * \brief Critical pressure of a component \f$\mathrm{[Pa]}\f$. | ||
231 | * | ||
232 | * \param compIdx The index of the component to consider | ||
233 | */ | ||
234 | static Scalar criticalPressure(int compIdx) | ||
235 | { | ||
236 | static const Scalar pcrit[] = { | ||
237 | H2O::criticalPressure(), | ||
238 | N2::criticalPressure() | ||
239 | }; | ||
240 | |||
241 | assert(0 <= compIdx && compIdx < numComponents); | ||
242 | return pcrit[compIdx]; | ||
243 | } | ||
244 | |||
245 | /*! | ||
246 | * \brief Vapor pressure including the Kelvin equation in \f$\mathrm{[Pa]}\f$ | ||
247 | * | ||
248 | * Calculate the decreased vapor pressure due to capillarity | ||
249 | * | ||
250 | * \param fluidState An arbitrary fluid state | ||
251 | * \param phaseIdx The index of the fluid phase to consider | ||
252 | * \param compIdx The index of the component to consider | ||
253 | */ | ||
254 | template <class FluidState> | ||
255 | static Scalar kelvinVaporPressure(const FluidState &fluidState, | ||
256 | const int phaseIdx, | ||
257 | const int compIdx) | ||
258 | { | ||
259 | assert(compIdx == H2OIdx && phaseIdx == liquidPhaseIdx); | ||
260 | |||
261 | using std::exp; | ||
262 | return fugacityCoefficient(fluidState, phaseIdx, compIdx) | ||
263 | * fluidState.pressure(phaseIdx) | ||
264 | * exp(-(fluidState.pressure(gasPhaseIdx)-fluidState.pressure(liquidPhaseIdx)) | ||
265 | / density(fluidState, phaseIdx) | ||
266 | / (Dumux::Constants<Scalar>::R / molarMass(compIdx)) | ||
267 | / fluidState.temperature()); | ||
268 | } | ||
269 | |||
270 | /*! | ||
271 | * \brief Molar volume of a component at the critical point \f$\mathrm{[m^3/mol]}\f$. | ||
272 | * | ||
273 | * \param compIdx The index of the component to consider | ||
274 | */ | ||
275 | static Scalar criticalMolarVolume(int compIdx) | ||
276 | { | ||
277 | DUNE_THROW(Dune::NotImplemented, | ||
278 | "H2ON2FluidSystem::criticalMolarVolume()"); | ||
279 | } | ||
280 | |||
281 | /*! | ||
282 | * \brief The acentric factor of a component \f$\mathrm{[-]}\f$. | ||
283 | * | ||
284 | * \param compIdx The index of the component to consider | ||
285 | */ | ||
286 | static Scalar acentricFactor(int compIdx) | ||
287 | { | ||
288 | static const Scalar accFac[] = { | ||
289 | H2O::acentricFactor(), | ||
290 | N2::acentricFactor() | ||
291 | }; | ||
292 | |||
293 | assert(0 <= compIdx && compIdx < numComponents); | ||
294 | return accFac[compIdx]; | ||
295 | } | ||
296 | |||
297 | /**************************************** | ||
298 | * thermodynamic relations | ||
299 | ****************************************/ | ||
300 | |||
301 | /*! | ||
302 | * \brief Initialize the fluid system's static parameters generically | ||
303 | * | ||
304 | * If a tabulated H2O component is used, we do our best to create | ||
305 | * tables that always work. | ||
306 | */ | ||
307 | static void init() | ||
308 | { | ||
309 |
1/2✓ Branch 1 taken 50 times.
✗ Branch 2 not taken.
|
54 | init(/*tempMin=*/273.15, |
310 | /*tempMax=*/623.15, | ||
311 | /*numTemp=*/100, | ||
312 | /*pMin=*/0.0, | ||
313 | /*pMax=*/20e6, | ||
314 | /*numP=*/200); | ||
315 | } | ||
316 | |||
317 | /*! | ||
318 | * \brief Initialize the fluid system's static parameters using | ||
319 | * problem specific temperature and pressure ranges | ||
320 | * | ||
321 | * \param tempMin The minimum temperature used for tabulation of water \f$\mathrm{[K]}\f$ | ||
322 | * \param tempMax The maximum temperature used for tabulation of water \f$\mathrm{[K]}\f$ | ||
323 | * \param nTemp The number of ticks on the temperature axis of the table of water | ||
324 | * \param pressMin The minimum pressure used for tabulation of water \f$\mathrm{[Pa]}\f$ | ||
325 | * \param pressMax The maximum pressure used for tabulation of water \f$\mathrm{[Pa]}\f$ | ||
326 | * \param nPress The number of ticks on the pressure axis of the table of water | ||
327 | */ | ||
328 | 79 | static void init(Scalar tempMin, Scalar tempMax, unsigned nTemp, | |
329 | Scalar pressMin, Scalar pressMax, unsigned nPress) | ||
330 | { | ||
331 | 79 | std::cout << "The H2O-N2 fluid system was configured with the following policy:\n"; | |
332 | 158 | std::cout << " - use H2O density as liquid mixture density: " << std::boolalpha << Policy::useH2ODensityAsLiquidMixtureDensity() << "\n"; | |
333 | 158 | std::cout << " - use ideal gas density: " << std::boolalpha << Policy::useIdealGasDensity() << "\n"; | |
334 | 158 | std::cout << " - use N2 viscosity as gas mixture viscosity: " << std::boolalpha << Policy::useN2ViscosityAsGasMixtureViscosity() << "\n"; | |
335 | 158 | std::cout << " - use N2 heat conductivity as gas mixture heat conductivity: " << std::boolalpha << Policy::useN2HeatConductivityAsGasMixtureHeatConductivity() << "\n"; | |
336 | 158 | std::cout << " - use ideal gas heat capacities: " << std::boolalpha << Policy::useIdealGasHeatCapacities() << std::endl; | |
337 | |||
338 | if constexpr (H2O::isTabulated) | ||
339 | 79 | H2O::init(tempMin, tempMax, nTemp, pressMin, pressMax, nPress); | |
340 | 79 | } | |
341 | |||
342 | using Base<Scalar, ThisType>::density; | ||
343 | /*! | ||
344 | * \brief Given a phase's composition, temperature, pressure, and | ||
345 | * the partial pressures of all components, return its | ||
346 | * density \f$\mathrm{[kg/m^3]}\f$. | ||
347 | * | ||
348 | * If Policy::useH2ODensityAsLiquidMixtureDensity() == false, we apply Eq. (7) | ||
349 | * in Class et al. (2002a) \cite A3:class:2002b <BR> | ||
350 | * for the liquid density. | ||
351 | * | ||
352 | * \param fluidState An arbitrary fluid state | ||
353 | * \param phaseIdx The index of the fluid phase to consider | ||
354 | */ | ||
355 | template <class FluidState> | ||
356 | 52716363 | static Scalar density(const FluidState &fluidState, | |
357 | int phaseIdx) | ||
358 | { | ||
359 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 52716329 times.
|
52716363 | assert(0 <= phaseIdx && phaseIdx < numPhases); |
360 | |||
361 |
2/2✓ Branch 0 taken 18549602 times.
✓ Branch 1 taken 34166717 times.
|
52716363 | Scalar T = fluidState.temperature(phaseIdx); |
362 |
2/2✓ Branch 0 taken 18549603 times.
✓ Branch 1 taken 34166718 times.
|
52716363 | Scalar p = fluidState.pressure(phaseIdx); |
363 | |||
364 | // liquid phase | ||
365 |
2/2✓ Branch 0 taken 18549607 times.
✓ Branch 1 taken 34166722 times.
|
52716363 | if (phaseIdx == liquidPhaseIdx) { |
366 | if (Policy::useH2ODensityAsLiquidMixtureDensity()) | ||
367 | // assume pure water | ||
368 | 22324003 | return H2O::liquidDensity(T, p); | |
369 | else | ||
370 | { | ||
371 | // See: Eq. (7) in Class et al. (2002a) | ||
372 | // This assumes each gas molecule displaces exactly one | ||
373 | // molecule in the liquid. | ||
374 | 11612628 | return H2O::liquidMolarDensity(T, p) | |
375 | 11612628 | * (H2O::molarMass()*fluidState.moleFraction(liquidPhaseIdx, H2OIdx) | |
376 | 23225118 | + N2::molarMass()*fluidState.moleFraction(liquidPhaseIdx, N2Idx)); | |
377 | } | ||
378 | } | ||
379 | |||
380 | // gas phase | ||
381 | using std::max; | ||
382 | if (Policy::useIdealGasDensity()) | ||
383 | // for the gas phase assume an ideal gas | ||
384 | { | ||
385 | 7142272 | const Scalar averageMolarMass = fluidState.averageMolarMass(gasPhaseIdx); | |
386 | 14284544 | return IdealGas::density(averageMolarMass, T, p); | |
387 | } | ||
388 | |||
389 | // assume ideal mixture: steam and nitrogen don't "see" each other | ||
390 | 23249950 | Scalar rho_gH2O = H2O::gasDensity(T, fluidState.partialPressure(gasPhaseIdx, H2OIdx)); | |
391 | 23250084 | Scalar rho_gN2 = N2::gasDensity(T, fluidState.partialPressure(gasPhaseIdx, N2Idx)); | |
392 | 11637460 | return (rho_gH2O + rho_gN2); | |
393 | } | ||
394 | |||
395 | using Base<Scalar, ThisType>::molarDensity; | ||
396 | //! \copydoc Dumux::FluidSystems::Base<Scalar,ThisType>::molarDensity(const FluidState&,int) | ||
397 | template <class FluidState> | ||
398 | 48062317 | static Scalar molarDensity(const FluidState &fluidState, int phaseIdx) | |
399 | { | ||
400 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 48062291 times.
|
48062317 | assert(0 <= phaseIdx && phaseIdx < numPhases); |
401 | |||
402 |
2/2✓ Branch 0 taken 31591342 times.
✓ Branch 1 taken 16470939 times.
|
48062325 | Scalar T = fluidState.temperature(phaseIdx); |
403 |
2/2✓ Branch 0 taken 31591343 times.
✓ Branch 1 taken 16470940 times.
|
48062325 | Scalar p = fluidState.pressure(phaseIdx); |
404 | |||
405 | // liquid phase | ||
406 |
2/2✓ Branch 0 taken 31591347 times.
✓ Branch 1 taken 16470944 times.
|
48062317 | if (phaseIdx == liquidPhaseIdx) |
407 | { | ||
408 | // assume pure water or that each gas molecule displaces exactly one | ||
409 | // molecule in the liquid. | ||
410 | 31591364 | return H2O::liquidMolarDensity(T, p); | |
411 | } | ||
412 | |||
413 | // gas phase | ||
414 | using std::max; | ||
415 | if (Policy::useIdealGasDensity()) | ||
416 | // for the gas phase assume an ideal gas | ||
417 | { | ||
418 | 9667002 | return IdealGas::molarDensity(T, p); | |
419 | } | ||
420 | |||
421 | // assume ideal mixture: steam and nitrogen don't "see" each other | ||
422 | 23249950 | Scalar rho_gH2O = H2O::gasMolarDensity(T, fluidState.partialPressure(gasPhaseIdx, H2OIdx)); | |
423 | 23250084 | Scalar rho_gN2 = N2::gasMolarDensity(T, fluidState.partialPressure(gasPhaseIdx, N2Idx)); | |
424 | 11637460 | return rho_gH2O + rho_gN2; | |
425 | } | ||
426 | |||
427 | using Base<Scalar, ThisType>::viscosity; | ||
428 | /*! | ||
429 | * \brief Calculate the dynamic viscosity of a fluid phase \f$\mathrm{[Pa*s]}\f$ | ||
430 | * | ||
431 | * Compositional effects in the gas phase are accounted by the Wilke method. | ||
432 | * See Reid et al. (1987) \cite reid1987 <BR> | ||
433 | * 4th edition, McGraw-Hill, 1987, 407-410 | ||
434 | * 5th edition, McGraw-Hill, 20001, p. 9.21/22 | ||
435 | * | ||
436 | * \param fluidState An arbitrary fluid state | ||
437 | * \param phaseIdx The index of the fluid phase to consider | ||
438 | * \note Compositional effects for a liquid mixture have to be implemented. | ||
439 | */ | ||
440 | template <class FluidState> | ||
441 | 49403082 | static Scalar viscosity(const FluidState &fluidState, | |
442 | int phaseIdx) | ||
443 | { | ||
444 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 49403056 times.
|
49403082 | assert(0 <= phaseIdx && phaseIdx < numPhases); |
445 | |||
446 |
2/2✓ Branch 0 taken 32903124 times.
✓ Branch 1 taken 16499922 times.
|
49403082 | Scalar T = fluidState.temperature(phaseIdx); |
447 |
2/2✓ Branch 0 taken 32903125 times.
✓ Branch 1 taken 16499923 times.
|
49403082 | Scalar p = fluidState.pressure(phaseIdx); |
448 | |||
449 | // liquid phase | ||
450 |
2/2✓ Branch 0 taken 32903129 times.
✓ Branch 1 taken 16499927 times.
|
49403082 | if (phaseIdx == liquidPhaseIdx) { |
451 | // assume pure water for the liquid phase | ||
452 | 32903142 | return H2O::liquidViscosity(T, p); | |
453 | } | ||
454 | |||
455 | // gas phase | ||
456 | if (Policy::useN2ViscosityAsGasMixtureViscosity()) | ||
457 | { | ||
458 | // assume pure nitrogen for the gas phase | ||
459 | 4862614 | return N2::gasViscosity(T, p); | |
460 | } | ||
461 | else | ||
462 | { | ||
463 | // Wilke method (Reid et al.): | ||
464 | 11637326 | Scalar muResult = 0; | |
465 | 23274652 | const Scalar mu[numComponents] = { | |
466 | 11637326 | h2oGasViscosityInMixture(T, p), | |
467 | 11637326 | N2::gasViscosity(T, p) | |
468 | }; | ||
469 | |||
470 | 11637326 | Scalar sumx = 0.0; | |
471 | using std::max; | ||
472 |
2/2✓ Branch 0 taken 23274648 times.
✓ Branch 1 taken 11637324 times.
|
34911978 | for (int compIdx = 0; compIdx < numComponents; ++compIdx) |
473 | 46549296 | sumx += fluidState.moleFraction(phaseIdx, compIdx); | |
474 |
1/2✓ Branch 0 taken 11637324 times.
✗ Branch 1 not taken.
|
11637326 | sumx = max(1e-10, sumx); |
475 | |||
476 |
2/2✓ Branch 0 taken 23274648 times.
✓ Branch 1 taken 11637324 times.
|
34911978 | for (int i = 0; i < numComponents; ++i) { |
477 | Scalar divisor = 0; | ||
478 | // using std::sqrt; | ||
479 | // using std::pow; | ||
480 |
2/2✓ Branch 0 taken 46549296 times.
✓ Branch 1 taken 23274648 times.
|
69823956 | for (int j = 0; j < numComponents; ++j) { |
481 | 139647912 | Scalar phiIJ = 1 + sqrt(mu[i]/mu[j]) * pow(molarMass(j)/molarMass(i), 1/4.0); | |
482 | 46549304 | phiIJ *= phiIJ; | |
483 | 46549304 | phiIJ /= sqrt(8*(1 + molarMass(i)/molarMass(j))); | |
484 | 93098592 | divisor += fluidState.moleFraction(phaseIdx, j)/sumx * phiIJ; | |
485 | } | ||
486 | 46549296 | muResult += fluidState.moleFraction(phaseIdx, i)/sumx * mu[i] / divisor; | |
487 | } | ||
488 | |||
489 | return muResult; | ||
490 | } | ||
491 | } | ||
492 | |||
493 | using Base<Scalar, ThisType>::fugacityCoefficient; | ||
494 | //! \copydoc Dumux::FluidSystems::Base<Scalar,ThisType>::fugacityCoefficient(const FluidState&,int,int) | ||
495 | template <class FluidState> | ||
496 | 69737412 | static Scalar fugacityCoefficient(const FluidState &fluidState, | |
497 | int phaseIdx, | ||
498 | int compIdx) | ||
499 | { | ||
500 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 69737396 times.
|
69737412 | assert(0 <= phaseIdx && phaseIdx < numPhases); |
501 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 69737396 times.
|
69737412 | assert(0 <= compIdx && compIdx < numComponents); |
502 | |||
503 |
2/2✓ Branch 0 taken 34868690 times.
✓ Branch 1 taken 34868690 times.
|
69737412 | Scalar T = fluidState.temperature(phaseIdx); |
504 |
2/2✓ Branch 0 taken 34868690 times.
✓ Branch 1 taken 34868690 times.
|
69737412 | Scalar p = fluidState.pressure(phaseIdx); |
505 | |||
506 | // liquid phase | ||
507 |
2/2✓ Branch 0 taken 34868698 times.
✓ Branch 1 taken 34868698 times.
|
69737412 | if (phaseIdx == liquidPhaseIdx) { |
508 |
2/2✓ Branch 0 taken 17434349 times.
✓ Branch 1 taken 17434349 times.
|
34868706 | if (compIdx == H2OIdx) |
509 | 17434353 | return H2O::vaporPressure(T)/p; | |
510 | 17434353 | return BinaryCoeff::H2O_N2::henry(T)/p; | |
511 | } | ||
512 | |||
513 | // for the gas phase, assume an ideal gas when it comes to | ||
514 | // fugacity (-> fugacity == partial pressure) | ||
515 | return 1.0; | ||
516 | } | ||
517 | |||
518 | using Base<Scalar, ThisType>::diffusionCoefficient; | ||
519 | //! \copydoc Dumux::FluidSystems::Base<Scalar,ThisType>::diffusionCoefficient(const FluidState&,int,int) | ||
520 | template <class FluidState> | ||
521 | 32 | static Scalar diffusionCoefficient(const FluidState &fluidState, | |
522 | int phaseIdx, | ||
523 | int compIdx) | ||
524 | { | ||
525 |
7/16✓ Branch 2 taken 16 times.
✗ Branch 3 not taken.
✓ Branch 11 taken 16 times.
✗ Branch 12 not taken.
✓ Branch 15 taken 16 times.
✗ Branch 16 not taken.
✓ Branch 18 taken 16 times.
✗ Branch 19 not taken.
✓ Branch 21 taken 16 times.
✗ Branch 22 not taken.
✓ Branch 23 taken 16 times.
✗ Branch 24 not taken.
✗ Branch 26 not taken.
✓ Branch 27 taken 16 times.
✗ Branch 29 not taken.
✗ Branch 30 not taken.
|
352 | DUNE_THROW(Dune::NotImplemented, "Diffusion coefficients"); |
526 | } | ||
527 | |||
528 | using Base<Scalar, ThisType>::binaryDiffusionCoefficient; | ||
529 | //! \copydoc Dumux::FluidSystems::Base<Scalar,ThisType>::binaryDiffusionCoefficient(const FluidState&,int,int,int) | ||
530 | template <class FluidState> | ||
531 | 53278459 | static Scalar binaryDiffusionCoefficient(const FluidState &fluidState, | |
532 | int phaseIdx, | ||
533 | int compIIdx, | ||
534 | int compJIdx) | ||
535 | |||
536 | { | ||
537 |
2/2✓ Branch 0 taken 17969932 times.
✓ Branch 1 taken 35308495 times.
|
53278459 | if (compIIdx > compJIdx) |
538 | { | ||
539 | using std::swap; | ||
540 | 17969940 | swap(compIIdx, compJIdx); | |
541 | } | ||
542 | |||
543 |
2/2✓ Branch 0 taken 34322731 times.
✓ Branch 1 taken 18955664 times.
|
53278459 | const Scalar T = fluidState.temperature(phaseIdx); |
544 |
2/2✓ Branch 0 taken 34322731 times.
✓ Branch 1 taken 18955664 times.
|
53278459 | const Scalar p = fluidState.pressure(phaseIdx); |
545 | |||
546 |
6/6✓ Branch 0 taken 34322747 times.
✓ Branch 1 taken 18955680 times.
✓ Branch 2 taken 34322743 times.
✓ Branch 3 taken 4 times.
✓ Branch 4 taken 34322739 times.
✓ Branch 5 taken 4 times.
|
53278459 | if (phaseIdx == liquidPhaseIdx && compIIdx == H2OIdx && compJIdx == N2Idx) |
547 | 68645494 | return BinaryCoeff::H2O_N2::liquidDiffCoeff(T, p); | |
548 | |||
549 |
6/6✓ Branch 0 taken 18955680 times.
✓ Branch 1 taken 8 times.
✓ Branch 2 taken 18955676 times.
✓ Branch 3 taken 4 times.
✓ Branch 4 taken 18955672 times.
✓ Branch 5 taken 4 times.
|
18955712 | else if (phaseIdx == gasPhaseIdx && compIIdx == H2OIdx && compJIdx == N2Idx) |
550 | 18955680 | return BinaryCoeff::H2O_N2::gasDiffCoeff(T, p); | |
551 | |||
552 | else | ||
553 |
10/22✓ Branch 2 taken 16 times.
✗ Branch 3 not taken.
✓ Branch 11 taken 16 times.
✗ Branch 12 not taken.
✓ Branch 16 taken 16 times.
✗ Branch 17 not taken.
✓ Branch 20 taken 16 times.
✗ Branch 21 not taken.
✓ Branch 24 taken 16 times.
✗ Branch 25 not taken.
✓ Branch 27 taken 16 times.
✗ Branch 28 not taken.
✓ Branch 30 taken 16 times.
✗ Branch 31 not taken.
✓ Branch 33 taken 16 times.
✗ Branch 34 not taken.
✓ Branch 35 taken 16 times.
✗ Branch 36 not taken.
✗ Branch 38 not taken.
✓ Branch 39 taken 16 times.
✗ Branch 41 not taken.
✗ Branch 42 not taken.
|
448 | DUNE_THROW(Dune::InvalidStateException, |
554 | "Binary diffusion coefficient of components " | ||
555 | << compIIdx << " and " << compJIdx | ||
556 | << " in phase " << phaseIdx << " is unavailable!\n"); | ||
557 | } | ||
558 | |||
559 | using Base<Scalar, ThisType>::enthalpy; | ||
560 | /*! | ||
561 | * \brief Given a phase's composition, temperature, pressure and | ||
562 | * density, calculate its specific enthalpy \f$\mathrm{[J/kg]}\f$. | ||
563 | * | ||
564 | * \note This fluid system neglects the contribution of | ||
565 | * gas-molecules in the liquid phase. This contribution is | ||
566 | * probably not big. Somebody would have to find out the | ||
567 | * enthalpy of solution for this system. ... | ||
568 | * | ||
569 | * \param fluidState An arbitrary fluid state | ||
570 | * \param phaseIdx The index of the fluid phase to consider | ||
571 | */ | ||
572 | template <class FluidState> | ||
573 | 42407747 | static Scalar enthalpy(const FluidState &fluidState, | |
574 | int phaseIdx) | ||
575 | { | ||
576 |
2/2✓ Branch 0 taken 26260526 times.
✓ Branch 1 taken 16147205 times.
|
42407747 | const Scalar T = fluidState.temperature(phaseIdx); |
577 |
2/2✓ Branch 0 taken 26260526 times.
✓ Branch 1 taken 16147205 times.
|
42407747 | const Scalar p = fluidState.pressure(phaseIdx); |
578 | |||
579 | // liquid phase | ||
580 |
2/2✓ Branch 0 taken 26260530 times.
✓ Branch 1 taken 16147209 times.
|
42407747 | if (phaseIdx == liquidPhaseIdx) { |
581 | 26260534 | return H2O::liquidEnthalpy(T, p); | |
582 | } | ||
583 | // gas phase | ||
584 | else { | ||
585 | // assume ideal mixture: which means | ||
586 | // that the total specific enthalpy is the sum of the | ||
587 | // "partial specific enthalpies" of the components. | ||
588 | 16147213 | Scalar hH2O = | |
589 | fluidState.massFraction(gasPhaseIdx, H2OIdx) | ||
590 | 28953503 | * H2O::gasEnthalpy(T, p); | |
591 | 16147213 | Scalar hN2 = | |
592 | fluidState.massFraction(gasPhaseIdx, N2Idx) | ||
593 | 28953503 | * N2::gasEnthalpy(T, p); | |
594 | 16147213 | return hH2O + hN2; | |
595 | } | ||
596 | } | ||
597 | |||
598 | /*! | ||
599 | * \brief Returns the specific enthalpy \f$\mathrm{[J/kg]}\f$ of a component in the specified phase | ||
600 | * \param fluidState The fluid state | ||
601 | * \param phaseIdx The index of the phase | ||
602 | * \param componentIdx The index of the component | ||
603 | */ | ||
604 | template <class FluidState> | ||
605 | static Scalar componentEnthalpy(const FluidState &fluidState, | ||
606 | int phaseIdx, | ||
607 | int componentIdx) | ||
608 | { | ||
609 | const Scalar T = fluidState.temperature(phaseIdx); | ||
610 | const Scalar p = fluidState.pressure(phaseIdx); | ||
611 | |||
612 | if (phaseIdx == liquidPhaseIdx) | ||
613 | { | ||
614 | if (componentIdx == H2OIdx) | ||
615 | return H2O::liquidEnthalpy(T, p); | ||
616 | else if (componentIdx == N2Idx) | ||
617 | DUNE_THROW(Dune::NotImplemented, "Component enthalpy of nitrogen in liquid phase"); | ||
618 | else | ||
619 | DUNE_THROW(Dune::InvalidStateException, "Invalid component index " << componentIdx); | ||
620 | } | ||
621 | else if (phaseIdx == gasPhaseIdx) | ||
622 | { | ||
623 | if (componentIdx == H2OIdx) | ||
624 | return H2O::gasEnthalpy(T, p); | ||
625 | else if (componentIdx == N2Idx) | ||
626 | return N2::gasEnthalpy(T, p); | ||
627 | else | ||
628 | DUNE_THROW(Dune::InvalidStateException, "Invalid component index " << componentIdx); | ||
629 | } | ||
630 | else | ||
631 | DUNE_THROW(Dune::InvalidStateException, "Invalid phase index " << phaseIdx); | ||
632 | } | ||
633 | |||
634 | using Base<Scalar, ThisType>::thermalConductivity; | ||
635 | /*! | ||
636 | * \brief Thermal conductivity of a fluid phase \f$\mathrm{[W/(m K)]}\f$. | ||
637 | * | ||
638 | * Use the conductivity of air and water as a first approximation. | ||
639 | * | ||
640 | * \param fluidState An arbitrary fluid state | ||
641 | * \param phaseIdx The index of the fluid phase to consider | ||
642 | */ | ||
643 | template <class FluidState> | ||
644 | 50078898 | static Scalar thermalConductivity(const FluidState &fluidState, | |
645 | const int phaseIdx) | ||
646 | { | ||
647 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 50078890 times.
|
50078898 | assert(0 <= phaseIdx && phaseIdx < numPhases); |
648 | |||
649 |
2/2✓ Branch 0 taken 32187030 times.
✓ Branch 1 taken 17891852 times.
|
50078898 | const Scalar temperature = fluidState.temperature(phaseIdx) ; |
650 |
2/2✓ Branch 0 taken 32187030 times.
✓ Branch 1 taken 17891852 times.
|
50078898 | const Scalar pressure = fluidState.pressure(phaseIdx); |
651 |
2/2✓ Branch 0 taken 32187034 times.
✓ Branch 1 taken 17891856 times.
|
50078898 | if (phaseIdx == liquidPhaseIdx) |
652 | { | ||
653 | 32187038 | return H2O::liquidThermalConductivity(temperature, pressure); | |
654 | } | ||
655 | else | ||
656 | { | ||
657 | 17891860 | Scalar lambdaPureN2 = N2::gasThermalConductivity(temperature, pressure); | |
658 | if (!Policy::useN2HeatConductivityAsGasMixtureHeatConductivity()) | ||
659 | { | ||
660 | 11637326 | Scalar xN2 = fluidState.moleFraction(phaseIdx, N2Idx); | |
661 | 11637326 | Scalar xH2O = fluidState.moleFraction(phaseIdx, H2OIdx); | |
662 | 11637326 | Scalar lambdaN2 = xN2 * lambdaPureN2; | |
663 | 11637326 | Scalar partialPressure = pressure * xH2O; | |
664 | 11637326 | Scalar lambdaH2O = xH2O * H2O::gasThermalConductivity(temperature, partialPressure); | |
665 | 11637326 | return lambdaN2 + lambdaH2O; | |
666 | } | ||
667 | else | ||
668 | 6254534 | return lambdaPureN2; | |
669 | } | ||
670 | } | ||
671 | |||
672 | using Base<Scalar, ThisType>::heatCapacity; | ||
673 | //! \copydoc Dumux::FluidSystems::Base<Scalar,ThisType>::heatCapacity(const FluidState&,int) | ||
674 | template <class FluidState> | ||
675 | 1572488 | static Scalar heatCapacity(const FluidState &fluidState, | |
676 | int phaseIdx) | ||
677 | { | ||
678 |
2/2✓ Branch 0 taken 786240 times.
✓ Branch 1 taken 786240 times.
|
1572488 | if (phaseIdx == liquidPhaseIdx) { |
679 | 6534193 | return H2O::liquidHeatCapacity(fluidState.temperature(phaseIdx), | |
680 | 786244 | fluidState.pressure(phaseIdx)); | |
681 | } | ||
682 | |||
683 | // for the gas phase, assume ideal mixture | ||
684 | Scalar c_pN2; | ||
685 | Scalar c_pH2O; | ||
686 | // let the water and nitrogen components do things their own way | ||
687 | if (!Policy::useIdealGasHeatCapacities()) { | ||
688 | 2 | c_pN2 = N2::gasHeatCapacity(fluidState.temperature(phaseIdx), | |
689 | fluidState.pressure(phaseIdx) | ||
690 | 2 | * fluidState.moleFraction(phaseIdx, N2Idx)); | |
691 | |||
692 | 2 | c_pH2O = H2O::gasHeatCapacity(fluidState.temperature(phaseIdx), | |
693 | fluidState.pressure(phaseIdx) | ||
694 | 2 | * fluidState.moleFraction(phaseIdx, H2OIdx)); | |
695 | } | ||
696 | else { | ||
697 | // assume an ideal gas for both components. See: | ||
698 | // http://en.wikipedia.org/wiki/Heat_capacity | ||
699 | 786242 | Scalar c_vN2molar = Constants<Scalar>::R*2.39; | |
700 | 786242 | Scalar c_pN2molar = Constants<Scalar>::R + c_vN2molar; | |
701 | |||
702 | 786242 | Scalar c_vH2Omolar = Constants<Scalar>::R*3.37; // <- correct?? | |
703 | 786242 | Scalar c_pH2Omolar = Constants<Scalar>::R + c_vH2Omolar; | |
704 | |||
705 | 786242 | c_pN2 = c_pN2molar/molarMass(N2Idx); | |
706 | 786242 | c_pH2O = c_pH2Omolar/molarMass(H2OIdx); | |
707 | } | ||
708 | |||
709 | // mangle both components together | ||
710 | 786244 | return c_pH2O*fluidState.massFraction(gasPhaseIdx, H2OIdx) | |
711 | 786244 | + c_pN2*fluidState.massFraction(gasPhaseIdx, N2Idx); | |
712 | } | ||
713 | }; | ||
714 | |||
715 | } // end namespace FluidSystems | ||
716 | |||
717 | } // end namespace Dumux | ||
718 | |||
719 | #endif | ||
720 |