Line | Branch | Exec | Source |
---|---|---|---|
1 | // -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- | ||
2 | // vi: set et ts=4 sw=4 sts=4: | ||
3 | // | ||
4 | // SPDX-FileCopyrightInfo: Copyright © DuMux Project contributors, see AUTHORS.md in root folder | ||
5 | // SPDX-License-Identifier: GPL-3.0-or-later | ||
6 | // | ||
7 | |||
8 | /*! | ||
9 | * \file | ||
10 | * \ingroup FluidSystems | ||
11 | * \copybrief Dumux::FluidSystems::H2ON2O2 | ||
12 | */ | ||
13 | #ifndef DUMUX_H2O_N2_O2_FLUID_SYSTEM_HH | ||
14 | #define DUMUX_H2O_N2_O2_FLUID_SYSTEM_HH | ||
15 | |||
16 | #include <cassert> | ||
17 | #include <iomanip> | ||
18 | |||
19 | #include <dumux/common/exceptions.hh> | ||
20 | |||
21 | #include <dumux/material/fluidsystems/base.hh> | ||
22 | #include <dumux/material/idealgas.hh> | ||
23 | #include <dumux/material/constants.hh> | ||
24 | |||
25 | #include <dumux/material/components/n2.hh> | ||
26 | #include <dumux/material/components/h2o.hh> | ||
27 | #include <dumux/material/components/o2.hh> | ||
28 | |||
29 | #include <dumux/material/components/tabulatedcomponent.hh> | ||
30 | #include <dumux/material/binarycoefficients/h2o_n2.hh> | ||
31 | #include <dumux/material/binarycoefficients/h2o_o2.hh> | ||
32 | #include <dumux/material/binarycoefficients/n2_o2.hh> | ||
33 | |||
34 | #include <dumux/io/name.hh> | ||
35 | |||
36 | namespace Dumux { | ||
37 | namespace FluidSystems { | ||
38 | /*! | ||
39 | * \ingroup FluidSystems | ||
40 | * \brief Policy for the H2O-N2-O2 fluid system | ||
41 | */ | ||
42 | template<bool fastButSimplifiedRelations = false> | ||
43 | struct H2ON2O2DefaultPolicy | ||
44 | { | ||
45 | static constexpr bool useH2ODensityAsLiquidMixtureDensity() { return fastButSimplifiedRelations; } | ||
46 | static constexpr bool useIdealGasDensity() { return fastButSimplifiedRelations; } | ||
47 | static constexpr bool useN2ViscosityAsGasMixtureViscosity() { return fastButSimplifiedRelations; } | ||
48 | static constexpr bool useN2HeatConductivityAsGasMixtureHeatConductivity() { return fastButSimplifiedRelations; } | ||
49 | static constexpr bool useIdealGasHeatCapacities() { return fastButSimplifiedRelations; } | ||
50 | }; | ||
51 | |||
52 | /*! | ||
53 | * \ingroup FluidSystems | ||
54 | * \brief A two-phase (water and air) fluid system | ||
55 | * with water, nitrogen and oxygen as components. | ||
56 | * | ||
57 | * This fluidsystem uses tabulated version of water of the IAPWS-formulation. | ||
58 | * | ||
59 | * Also remember to initialize tabulated components (FluidSystem::init()), while this | ||
60 | * is not necessary for non-tabularized ones. | ||
61 | */ | ||
62 | template <class Scalar, class Policy = H2ON2O2DefaultPolicy<>> | ||
63 | class H2ON2O2 | ||
64 | : public Base<Scalar, H2ON2O2<Scalar, Policy> > | ||
65 | { | ||
66 | using ThisType = H2ON2O2<Scalar, Policy>; | ||
67 | |||
68 | using IdealGas = Dumux::IdealGas<Scalar>; | ||
69 | using Constants = Dumux::Constants<Scalar>; | ||
70 | using TabulatedH2O = Components::TabulatedComponent<Dumux::Components::H2O<Scalar> >; | ||
71 | using SimpleN2 = Dumux::Components::N2<Scalar>; | ||
72 | using O2 = Dumux::Components::O2<Scalar>; | ||
73 | |||
74 | //! The components for pure water | ||
75 | using H2O = TabulatedH2O; | ||
76 | |||
77 | //! The components for pure nitrogen | ||
78 | using N2 = SimpleN2; | ||
79 | |||
80 | public: | ||
81 | static constexpr int numPhases = 2; //!< Number of phases in the fluid system | ||
82 | static constexpr int numComponents = 3; //!< Number of components in the fluid system | ||
83 | static constexpr int numSPhases = 0; // TODO: Remove | ||
84 | |||
85 | static constexpr int liquidPhaseIdx = 0; //!< index of the liquid phase | ||
86 | static constexpr int gasPhaseIdx = 1; //!< index of the gas phase | ||
87 | static constexpr int phase0Idx = liquidPhaseIdx; //!< index of the first phase | ||
88 | static constexpr int phase1Idx = gasPhaseIdx; //!< index of the second phase | ||
89 | |||
90 | static constexpr int H2OIdx = 0; | ||
91 | static constexpr int N2Idx = 1; | ||
92 | static constexpr int O2Idx = 2; | ||
93 | |||
94 | static constexpr int comp0Idx = H2OIdx; // first major component | ||
95 | static constexpr int comp1Idx = N2Idx; // second major component | ||
96 | static constexpr int comp2Idx = O2Idx; // secondary component | ||
97 | |||
98 | // main component at 20°C and 1 bar | ||
99 | static constexpr int liquidPhaseMainCompIdx = H2OIdx; | ||
100 | static constexpr int gasPhaseMainCompIdx = N2Idx; | ||
101 | |||
102 | /**************************************** | ||
103 | * Fluid phase related static parameters | ||
104 | ****************************************/ | ||
105 | /*! | ||
106 | * \brief Return the human readable name of a fluid phase | ||
107 | * | ||
108 | * \param phaseIdx The index of the fluid phase to consider | ||
109 | */ | ||
110 | 58 | static std::string phaseName(int phaseIdx) | |
111 | { | ||
112 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 53 times.
|
58 | assert(0 <= phaseIdx && phaseIdx < numPhases); |
113 |
2/3✓ Branch 0 taken 26 times.
✓ Branch 1 taken 27 times.
✗ Branch 2 not taken.
|
58 | switch (phaseIdx) |
114 | { | ||
115 | 28 | case liquidPhaseIdx: return IOName::liquidPhase(); | |
116 | 30 | case gasPhaseIdx: return IOName::gaseousPhase(); | |
117 | } | ||
118 | ✗ | DUNE_THROW(Dune::InvalidStateException, "Invalid phase index " << phaseIdx); | |
119 | } | ||
120 | |||
121 | /*! | ||
122 | * \brief Return whether a phase is gaseous | ||
123 | * | ||
124 | * \param phaseIdx The index of the fluid phase to consider | ||
125 | */ | ||
126 | static constexpr bool isGas(int phaseIdx) | ||
127 | { | ||
128 |
2/4✗ Branch 0 not taken.
✓ Branch 1 taken 6 times.
✗ Branch 3 not taken.
✓ Branch 4 taken 6 times.
|
12 | assert(0 <= phaseIdx && phaseIdx < numPhases); |
129 | return phaseIdx == gasPhaseIdx; | ||
130 | } | ||
131 | |||
132 | /*! | ||
133 | * \brief Returns true if and only if a fluid phase is assumed to | ||
134 | * be an ideal mixture. | ||
135 | * | ||
136 | * We define an ideal mixture as a fluid phase where the fugacity | ||
137 | * coefficients of all components times the pressure of the phase | ||
138 | * are independent on the fluid composition. This assumption is true | ||
139 | * if Henry's law and Raoult's law apply. If you are unsure what | ||
140 | * this function should return, it is safe to return false. The | ||
141 | * only damage done will be (slightly) increased computation times | ||
142 | * in some cases. | ||
143 | * | ||
144 | * \param phaseIdx The index of the fluid phase to consider | ||
145 | */ | ||
146 | static bool isIdealMixture(int phaseIdx) | ||
147 | { | ||
148 | ✗ | assert(0 <= phaseIdx && phaseIdx < numPhases); | |
149 | // we assume Henry's and Raoult's laws for the water phase and | ||
150 | // and no interaction between gas molecules of different | ||
151 | // components, so all phases are ideal mixtures! | ||
152 | return true; | ||
153 | } | ||
154 | |||
155 | /*! | ||
156 | * \brief Returns true if and only if a fluid phase is assumed to | ||
157 | * be compressible. | ||
158 | * | ||
159 | * Compressible means that the partial derivative of the density | ||
160 | * to the fluid pressure is always larger than zero. | ||
161 | * | ||
162 | * \param phaseIdx The index of the fluid phase to consider | ||
163 | */ | ||
164 | static constexpr bool isCompressible(int phaseIdx) | ||
165 | { | ||
166 | assert(0 <= phaseIdx && phaseIdx < numPhases); | ||
167 | // gases are always compressible | ||
168 | if (phaseIdx == gasPhaseIdx) | ||
169 | return true; | ||
170 | // the water component decides for the liquid phase... | ||
171 | return H2O::liquidIsCompressible(); | ||
172 | } | ||
173 | |||
174 | /*! | ||
175 | * \brief Returns true if and only if a fluid phase is assumed to | ||
176 | * be an ideal gas. | ||
177 | * | ||
178 | * \param phaseIdx The index of the fluid phase to consider | ||
179 | */ | ||
180 | static bool isIdealGas(int phaseIdx) | ||
181 | { | ||
182 | assert(0 <= phaseIdx && phaseIdx < numPhases); | ||
183 | if (phaseIdx == gasPhaseIdx) | ||
184 | // let the components decide | ||
185 | return H2O::gasIsIdeal() && N2::gasIsIdeal() && O2::gasIsIdeal(); | ||
186 | return false; // not a gas | ||
187 | } | ||
188 | |||
189 | /*! | ||
190 | * \brief Returns whether the fluids are miscible | ||
191 | */ | ||
192 | static constexpr bool isMiscible() | ||
193 | { return true; } | ||
194 | |||
195 | /**************************************** | ||
196 | * Component related static parameters | ||
197 | ****************************************/ | ||
198 | /*! | ||
199 | * \brief Return the human readable name of a component | ||
200 | * | ||
201 | * \param compIdx The index of the component to consider | ||
202 | */ | ||
203 | 36 | static std::string componentName(int compIdx) | |
204 | { | ||
205 |
3/4✓ Branch 0 taken 9 times.
✓ Branch 1 taken 9 times.
✓ Branch 2 taken 9 times.
✗ Branch 3 not taken.
|
36 | switch (compIdx) |
206 | { | ||
207 | 12 | case H2OIdx: return H2O::name(); | |
208 | 12 | case N2Idx: return N2::name(); | |
209 | 12 | case O2Idx: return O2::name(); | |
210 | } | ||
211 | |||
212 | ✗ | DUNE_THROW(Dune::InvalidStateException, "Invalid component index " << compIdx); | |
213 | } | ||
214 | |||
215 | /*! | ||
216 | * \brief Return the molar mass of a component in \f$\mathrm{[kg/mol]}\f$. | ||
217 | * | ||
218 | * \param compIdx The index of the component to consider | ||
219 | */ | ||
220 | static Scalar molarMass(int compIdx) | ||
221 | { | ||
222 | static const Scalar M[] = { | ||
223 | H2O::molarMass(), | ||
224 | N2::molarMass(), | ||
225 | O2::molarMass() | ||
226 | }; | ||
227 | |||
228 |
3/6✗ Branch 0 not taken.
✓ Branch 1 taken 8687334 times.
✗ Branch 3 not taken.
✓ Branch 4 taken 6 times.
✗ Branch 6 not taken.
✓ Branch 7 taken 36 times.
|
8687376 | assert(0 <= compIdx && compIdx < numComponents); |
229 |
2/4✓ Branch 1 taken 3 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 3 times.
✗ Branch 5 not taken.
|
9936375 | return M[compIdx]; |
230 | } | ||
231 | |||
232 | /*! | ||
233 | * \brief Critical temperature of a component \f$\mathrm{[K]}\f$. | ||
234 | * | ||
235 | * \param compIdx The index of the component to consider | ||
236 | */ | ||
237 | static Scalar criticalTemperature(int compIdx) | ||
238 | { | ||
239 | static const Scalar Tcrit[] = { | ||
240 | H2O::criticalTemperature(), | ||
241 | N2::criticalTemperature(), | ||
242 | O2::criticalTemperature() | ||
243 | }; | ||
244 | |||
245 | assert(0 <= compIdx && compIdx < numComponents); | ||
246 | return Tcrit[compIdx]; | ||
247 | } | ||
248 | |||
249 | /*! | ||
250 | * \brief Critical pressure of a component \f$\mathrm{[Pa]}\f$. | ||
251 | * | ||
252 | * \param compIdx The index of the component to consider | ||
253 | */ | ||
254 | static Scalar criticalPressure(int compIdx) | ||
255 | { | ||
256 | static const Scalar pcrit[] = { | ||
257 | H2O::criticalPressure(), | ||
258 | N2::criticalPressure(), | ||
259 | O2::criticalPressure() | ||
260 | }; | ||
261 | |||
262 | assert(0 <= compIdx && compIdx < numComponents); | ||
263 | return pcrit[compIdx]; | ||
264 | } | ||
265 | |||
266 | /*! | ||
267 | * \brief Molar volume of a component at the critical point \f$\mathrm{[m^3/mol]}\f$. | ||
268 | * | ||
269 | * \param compIdx The index of the component to consider | ||
270 | */ | ||
271 | static Scalar criticalMolarVolume(int compIdx) | ||
272 | { | ||
273 | DUNE_THROW(Dune::NotImplemented, | ||
274 | "H2ON2O2FluidSystem::criticalMolarVolume()"); | ||
275 | } | ||
276 | |||
277 | /*! | ||
278 | * \brief The acentric factor of a component \f$\mathrm{[-]}\f$. | ||
279 | * | ||
280 | * \param compIdx The index of the component to consider | ||
281 | */ | ||
282 | static Scalar acentricFactor(int compIdx) | ||
283 | { | ||
284 | static const Scalar accFac[] = { | ||
285 | H2O::acentricFactor(), | ||
286 | N2::acentricFactor(), | ||
287 | O2::acentricFactor() | ||
288 | }; | ||
289 | |||
290 | assert(0 <= compIdx && compIdx < numComponents); | ||
291 | return accFac[compIdx]; | ||
292 | } | ||
293 | |||
294 | /*! | ||
295 | * \brief Kelvin equation in \f$\mathrm{[Pa]}\f$ | ||
296 | * | ||
297 | * Calculate the increase vapor pressure over the | ||
298 | * curved surface of a drop with radius r | ||
299 | * | ||
300 | * \param fluidState An arbitrary fluid state | ||
301 | * \param phaseIdx The index of the fluid phase to consider | ||
302 | * \param compIdx The index of the component to consider | ||
303 | * \param radius The radius of the drop | ||
304 | */ | ||
305 | template <class FluidState> | ||
306 | static Scalar kelvinVaporPressure(const FluidState &fluidState, | ||
307 | const int phaseIdx, | ||
308 | const int compIdx, | ||
309 | const Scalar radius) | ||
310 | { | ||
311 | assert(0 <= phaseIdx && phaseIdx == liquidPhaseIdx); | ||
312 | assert(0 <= compIdx && compIdx == liquidPhaseMainCompIdx); | ||
313 | |||
314 | Scalar T = fluidState.temperature(phaseIdx); | ||
315 | |||
316 | Scalar vaporPressure = H2O::vaporPressure(T); | ||
317 | Scalar exponent = molarMass(compIdx)/(density(fluidState, phaseIdx) * Constants::R * T); | ||
318 | exponent *= (2 * surfaceTension(fluidState) / radius); | ||
319 | using std::exp; | ||
320 | Scalar kelvinVaporPressure = vaporPressure * exp(exponent); | ||
321 | |||
322 | return kelvinVaporPressure; | ||
323 | } | ||
324 | |||
325 | /*! | ||
326 | * \brief Vapor pressure including the Kelvin equation in \f$\mathrm{[Pa]}\f$ | ||
327 | * | ||
328 | * Calculate the decreased vapor pressure due to capillarity | ||
329 | * | ||
330 | * \param fluidState An arbitrary fluid state | ||
331 | * \param phaseIdx The index of the fluid phase to consider | ||
332 | * \param compIdx The index of the component to consider | ||
333 | */ | ||
334 | template <class FluidState> | ||
335 | static Scalar kelvinVaporPressure(const FluidState &fluidState, | ||
336 | const int phaseIdx, | ||
337 | const int compIdx) | ||
338 | { | ||
339 | assert(compIdx == liquidPhaseMainCompIdx && phaseIdx == liquidPhaseIdx); | ||
340 | |||
341 | using std::exp; | ||
342 | return fugacityCoefficient(fluidState, phaseIdx, compIdx) | ||
343 | * fluidState.pressure(phaseIdx) | ||
344 | * exp(-(fluidState.pressure(gasPhaseIdx)-fluidState.pressure(liquidPhaseIdx)) | ||
345 | / density(fluidState, phaseIdx) | ||
346 | / (Dumux::Constants<Scalar>::R / molarMass(compIdx)) | ||
347 | / fluidState.temperature()); | ||
348 | } | ||
349 | |||
350 | /*! | ||
351 | * \brief Calculate the surface tension between water and air in \f$\mathrm{[\frac{N}{m}]}\f$, | ||
352 | * according to IAPWS Release on Surface Tension from September 1994. | ||
353 | * The equation is valid between the triple Point (0.01C) and the critical temperature. | ||
354 | * | ||
355 | * \param fluidState An arbitrary fluid state | ||
356 | */ | ||
357 | template <class FluidState> | ||
358 | static Scalar surfaceTension(const FluidState &fluidState) | ||
359 | { | ||
360 | const Scalar T = fluidState.temperature(); //K | ||
361 | const Scalar B = 0.2358 ; // [N/m] | ||
362 | const Scalar T_c = H2O::criticalTemperature(); //K | ||
363 | const Scalar mu = 1.256; | ||
364 | const Scalar b = -0.625; | ||
365 | //Equation to calculate surface Tension of Water According to IAPWS Release on Surface Tension from September 1994 | ||
366 | using std::pow; | ||
367 | const Scalar surfaceTension = B*pow((1.-(T/T_c)),mu)*(1.+b*(1.-(T/T_c))); | ||
368 | return surfaceTension; //surface Tension [N/m] | ||
369 | } | ||
370 | /**************************************** | ||
371 | * thermodynamic relations | ||
372 | ****************************************/ | ||
373 | |||
374 | /*! | ||
375 | * \brief Initialize the fluid system's static parameters generically | ||
376 | * | ||
377 | * If a tabulated H2O component is used, we do our best to create | ||
378 | * tables that always work. | ||
379 | */ | ||
380 | static void init() | ||
381 | { | ||
382 | 3 | init(/*tempMin=*/273.15, | |
383 | /*tempMax=*/623.15, | ||
384 | /*numTemp=*/100, | ||
385 | /*pMin=*/0.0, | ||
386 | /*pMax=*/20e6, | ||
387 | /*numP=*/200); | ||
388 | } | ||
389 | |||
390 | /*! | ||
391 | * \brief Initialize the fluid system's static parameters using | ||
392 | * problem specific temperature and pressure ranges | ||
393 | * | ||
394 | * \param tempMin The minimum temperature used for tabulation of water \f$\mathrm{[K]}\f$ | ||
395 | * \param tempMax The maximum temperature used for tabulation of water \f$\mathrm{[K]}\f$ | ||
396 | * \param nTemp The number of ticks on the temperature axis of the table of water | ||
397 | * \param pressMin The minimum pressure used for tabulation of water \f$\mathrm{[Pa]}\f$ | ||
398 | * \param pressMax The maximum pressure used for tabulation of water \f$\mathrm{[Pa]}\f$ | ||
399 | * \param nPress The number of ticks on the pressure axis of the table of water | ||
400 | */ | ||
401 | 9 | static void init(Scalar tempMin, Scalar tempMax, unsigned nTemp, | |
402 | Scalar pressMin, Scalar pressMax, unsigned nPress) | ||
403 | { | ||
404 | 9 | std::cout << "The H2O-N2-O2 fluid system was configured with the following policy:\n"; | |
405 | 18 | std::cout << " - use H2O density as liquid mixture density: " << std::boolalpha << Policy::useH2ODensityAsLiquidMixtureDensity() << "\n"; | |
406 | 18 | std::cout << " - use ideal gas density: " << std::boolalpha << Policy::useIdealGasDensity() << "\n"; | |
407 | 18 | std::cout << " - use N2 viscosity as gas mixture viscosity: " << std::boolalpha << Policy::useN2ViscosityAsGasMixtureViscosity() << "\n"; | |
408 | 18 | std::cout << " - use N2 heat conductivity as gas mixture heat conductivity: " << std::boolalpha << Policy::useN2HeatConductivityAsGasMixtureHeatConductivity() << "\n"; | |
409 | 18 | std::cout << " - use ideal gas heat capacities: " << std::boolalpha << Policy::useIdealGasHeatCapacities() << std::endl; | |
410 | |||
411 | if (H2O::isTabulated) | ||
412 | { | ||
413 | 9 | TabulatedH2O::init(tempMin, tempMax, nTemp, | |
414 | pressMin, pressMax, nPress); | ||
415 | } | ||
416 | 9 | } | |
417 | |||
418 | using Base<Scalar, ThisType>::density; | ||
419 | /*! | ||
420 | * \brief Given a phase's composition, temperature, pressure, and | ||
421 | * the partial pressures of all components, return its | ||
422 | * density \f$\mathrm{[kg/m^3]}\f$. | ||
423 | * | ||
424 | * If Policy::useH2ODensityAsLiquidMixtureDensity() == false, we apply Eq. (7) | ||
425 | * in Class et al. (2002a) \cite A3:class:2002b <BR> | ||
426 | * for the liquid density. | ||
427 | * | ||
428 | * \param fluidState An arbitrary fluid state | ||
429 | * \param phaseIdx The index of the fluid phase to consider | ||
430 | */ | ||
431 | template <class FluidState> | ||
432 | 603436 | static Scalar density(const FluidState &fluidState, | |
433 | int phaseIdx) | ||
434 | { | ||
435 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 603431 times.
|
603436 | assert(0 <= phaseIdx && phaseIdx < numPhases); |
436 | |||
437 |
2/2✓ Branch 0 taken 301713 times.
✓ Branch 1 taken 301713 times.
|
603436 | Scalar T = fluidState.temperature(phaseIdx); |
438 |
2/2✓ Branch 0 taken 301713 times.
✓ Branch 1 taken 301713 times.
|
603436 | Scalar p = fluidState.pressure(phaseIdx); |
439 | |||
440 | // liquid phase | ||
441 |
2/2✓ Branch 0 taken 301715 times.
✓ Branch 1 taken 301716 times.
|
603436 | if (phaseIdx == liquidPhaseIdx) |
442 | { | ||
443 | // assume pure water | ||
444 | if (Policy::useH2ODensityAsLiquidMixtureDensity()) | ||
445 | 2 | return H2O::liquidDensity(T, p); | |
446 | |||
447 | // See: Eq. (7) in Class et al. (2002a) | ||
448 | // This assumes each gas molecule displaces exactly one | ||
449 | // molecule in the liquid. | ||
450 | else | ||
451 | 301715 | return H2O::liquidMolarDensity(T, p) | |
452 | 301715 | * (fluidState.moleFraction(liquidPhaseIdx, H2OIdx)*H2O::molarMass() | |
453 | 301715 | + fluidState.moleFraction(liquidPhaseIdx, N2Idx)*N2::molarMass() | |
454 | 603428 | + fluidState.moleFraction(liquidPhaseIdx, O2Idx)*O2::molarMass()); | |
455 | } | ||
456 | |||
457 | // gas phase | ||
458 | else if (phaseIdx == gasPhaseIdx) | ||
459 | { | ||
460 | |||
461 | // for the gas phase assume an ideal gas | ||
462 | using std::max; | ||
463 | if (Policy::useIdealGasDensity()) | ||
464 | 4 | return IdealGas::molarDensity(T, p) * fluidState.averageMolarMass(gasPhaseIdx); | |
465 | |||
466 | // assume ideal mixture: steam, nitrogen and oxygen don't "see" each other | ||
467 | else | ||
468 | 603430 | return H2O::gasDensity(T, fluidState.partialPressure(gasPhaseIdx, H2OIdx)) | |
469 | 603430 | + N2::gasDensity(T, fluidState.partialPressure(gasPhaseIdx, N2Idx)) | |
470 | 905143 | + O2::gasDensity(T, fluidState.partialPressure(gasPhaseIdx, O2Idx)); | |
471 | } | ||
472 | |||
473 | DUNE_THROW(Dune::InvalidStateException, "Unknown phase index " << phaseIdx); | ||
474 | } | ||
475 | |||
476 | using Base<Scalar, ThisType>::molarDensity; | ||
477 | //! \copydoc Base<Scalar,ThisType>::molarDensity(const FluidState&,int) | ||
478 | template <class FluidState> | ||
479 | 603436 | static Scalar molarDensity(const FluidState &fluidState, int phaseIdx) | |
480 | { | ||
481 |
2/2✓ Branch 0 taken 301713 times.
✓ Branch 1 taken 301713 times.
|
603436 | const Scalar T = fluidState.temperature(phaseIdx); |
482 |
2/2✓ Branch 0 taken 301713 times.
✓ Branch 1 taken 301713 times.
|
603436 | const Scalar p = fluidState.pressure(phaseIdx); |
483 | |||
484 |
2/2✓ Branch 0 taken 301715 times.
✓ Branch 1 taken 301716 times.
|
603436 | if (phaseIdx == liquidPhaseIdx) |
485 | { | ||
486 | // assume pure water or that each gas molecule displaces exactly one | ||
487 | // molecule in the liquid. | ||
488 | 301717 | return H2O::liquidMolarDensity(T, p); | |
489 | } | ||
490 | else | ||
491 | { | ||
492 | if (Policy::useIdealGasDensity()) | ||
493 | { //assume ideal gas | ||
494 | 4 | return IdealGas::molarDensity(T,p); | |
495 | } | ||
496 | |||
497 | 603430 | return H2O::gasMolarDensity(T, fluidState.partialPressure(gasPhaseIdx, H2OIdx)) | |
498 | 603430 | + N2::gasMolarDensity(T, fluidState.partialPressure(gasPhaseIdx, N2Idx)) | |
499 | 905143 | + O2::gasMolarDensity(T, fluidState.partialPressure(gasPhaseIdx, O2Idx)); | |
500 | } | ||
501 | } | ||
502 | |||
503 | using Base<Scalar, ThisType>::viscosity; | ||
504 | /*! | ||
505 | * \brief Calculate the dynamic viscosity of a fluid phase \f$\mathrm{[Pa*s]}\f$ | ||
506 | * | ||
507 | * Compositional effects in the gas phase are accounted by the Wilke method. | ||
508 | * See Reid et al. (1987) \cite reid1987 <BR> | ||
509 | * 4th edition, McGraw-Hill, 1987, 407-410 | ||
510 | * 5th edition, McGraw-Hill, 20001, p. 9.21/22 | ||
511 | * \note Compositional effects for a liquid mixture have to be implemented. | ||
512 | * | ||
513 | * \param fluidState An arbitrary fluid state | ||
514 | * \param phaseIdx The index of the fluid phase to consider | ||
515 | */ | ||
516 | template <class FluidState> | ||
517 | 603436 | static Scalar viscosity(const FluidState &fluidState, | |
518 | int phaseIdx) | ||
519 | { | ||
520 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 603431 times.
|
603436 | assert(0 <= phaseIdx && phaseIdx < numPhases); |
521 | |||
522 |
2/2✓ Branch 0 taken 301713 times.
✓ Branch 1 taken 301713 times.
|
603436 | Scalar T = fluidState.temperature(phaseIdx); |
523 |
2/2✓ Branch 0 taken 301713 times.
✓ Branch 1 taken 301713 times.
|
603436 | Scalar p = fluidState.pressure(phaseIdx); |
524 | |||
525 | // liquid phase | ||
526 |
2/2✓ Branch 0 taken 301715 times.
✓ Branch 1 taken 301716 times.
|
603436 | if (phaseIdx == liquidPhaseIdx) { |
527 | // assume pure water for the liquid phase | ||
528 | 301717 | return H2O::liquidViscosity(T, p); | |
529 | } | ||
530 | |||
531 | // gas phase | ||
532 | if (Policy::useN2ViscosityAsGasMixtureViscosity()) | ||
533 | { | ||
534 | // assume pure nitrogen for the gas phase | ||
535 | 2 | return N2::gasViscosity(T, p); | |
536 | } | ||
537 | else | ||
538 | { | ||
539 | // Wilke method (Reid et al.): | ||
540 | 301717 | Scalar muResult = 0; | |
541 | 905151 | const Scalar mu[numComponents] = { | |
542 | 301717 | h2oGasViscosityInMixture(T, p), | |
543 | 301717 | N2::gasViscosity(T, p), | |
544 | 301717 | O2::gasViscosity(T, p) | |
545 | }; | ||
546 | |||
547 | 301717 | Scalar sumx = 0.0; | |
548 | using std::max; | ||
549 |
2/2✓ Branch 0 taken 905145 times.
✓ Branch 1 taken 301715 times.
|
1206868 | for (int compIdx = 0; compIdx < numComponents; ++compIdx) |
550 | 1810290 | sumx += fluidState.moleFraction(phaseIdx, compIdx); | |
551 |
1/2✓ Branch 0 taken 301715 times.
✗ Branch 1 not taken.
|
301717 | sumx = max(1e-10, sumx); |
552 | |||
553 |
2/2✓ Branch 0 taken 905145 times.
✓ Branch 1 taken 301715 times.
|
1206868 | for (int i = 0; i < numComponents; ++i) { |
554 | Scalar divisor = 0; | ||
555 | using std::pow; | ||
556 | using std::sqrt; | ||
557 |
2/2✓ Branch 0 taken 2715435 times.
✓ Branch 1 taken 905145 times.
|
3620604 | for (int j = 0; j < numComponents; ++j) { |
558 | 8146359 | Scalar phiIJ = 1 + sqrt(mu[i]/mu[j]) * pow(molarMass(j)/molarMass(i), 1/4.0); | |
559 | 2715453 | phiIJ *= phiIJ; | |
560 | 2715453 | phiIJ /= sqrt(8*(1 + molarMass(i)/molarMass(j))); | |
561 | 5430870 | divisor += fluidState.moleFraction(phaseIdx, j)/sumx * phiIJ; | |
562 | } | ||
563 | 1810290 | muResult += fluidState.moleFraction(phaseIdx, i)/sumx * mu[i] / divisor; | |
564 | } | ||
565 | return muResult; | ||
566 | } | ||
567 | } | ||
568 | |||
569 | using Base<Scalar, ThisType>::fugacityCoefficient; | ||
570 | /*! | ||
571 | * \brief Returns the fugacity coefficient \f$\mathrm{[-]}\f$ of a component in a | ||
572 | * phase. | ||
573 | * | ||
574 | * The fugacity coefficient \f$\phi^\kappa_\alpha\f$ of | ||
575 | * component \f$\kappa\f$ in phase \f$\alpha\f$ is connected to | ||
576 | * the fugacity \f$f^\kappa_\alpha\f$ and the component's mole | ||
577 | * fraction \f$x^\kappa_\alpha\f$ by means of the relation | ||
578 | * | ||
579 | * \f[ | ||
580 | f^\kappa_\alpha = \phi^\kappa_\alpha\;x^\kappa_\alpha\;p_\alpha | ||
581 | \f] | ||
582 | * where \f$p_\alpha\f$ is the pressure of the fluid phase. | ||
583 | * | ||
584 | * For liquids with very low miscibility this boils down to the | ||
585 | * Henry constant for the solutes and the saturated vapor pressure | ||
586 | * both divided by phase pressure. | ||
587 | * \param fluidState An arbitrary fluid state | ||
588 | * \param phaseIdx The index of the fluid phase to consider | ||
589 | * \param compIdx The index of the component to consider | ||
590 | */ | ||
591 | template <class FluidState> | ||
592 | 1810308 | static Scalar fugacityCoefficient(const FluidState &fluidState, | |
593 | int phaseIdx, | ||
594 | int compIdx) | ||
595 | { | ||
596 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1810293 times.
|
1810308 | assert(0 <= phaseIdx && phaseIdx < numPhases); |
597 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1810293 times.
|
1810308 | assert(0 <= compIdx && compIdx < numComponents); |
598 | |||
599 |
2/2✓ Branch 0 taken 905139 times.
✓ Branch 1 taken 905139 times.
|
1810308 | Scalar T = fluidState.temperature(phaseIdx); |
600 |
2/2✓ Branch 0 taken 905139 times.
✓ Branch 1 taken 905139 times.
|
1810308 | Scalar p = fluidState.pressure(phaseIdx); |
601 | |||
602 | // liquid phase | ||
603 |
2/2✓ Branch 0 taken 905145 times.
✓ Branch 1 taken 905148 times.
|
1810308 | if (phaseIdx == liquidPhaseIdx) |
604 | { | ||
605 |
3/4✓ Branch 0 taken 301715 times.
✓ Branch 1 taken 301715 times.
✓ Branch 2 taken 301715 times.
✗ Branch 3 not taken.
|
905151 | switch(compIdx){ |
606 | 301717 | case H2OIdx: return H2O::vaporPressure(T)/p; | |
607 | 301717 | case N2Idx: return BinaryCoeff::H2O_N2::henry(T)/p; | |
608 | 301717 | case O2Idx: return BinaryCoeff::H2O_O2::henry(T)/p; | |
609 | }; | ||
610 | } | ||
611 | |||
612 | // for the gas phase, assume an ideal gas when it comes to | ||
613 | // fugacity (-> fugacity == partial pressure) | ||
614 | return 1.0; | ||
615 | } | ||
616 | |||
617 | using Base<Scalar, ThisType>::diffusionCoefficient; | ||
618 | //! \copydoc Base<Scalar,ThisType>::diffusionCoefficient(const FluidState&,int,int) | ||
619 | template <class FluidState> | ||
620 | 30 | static Scalar diffusionCoefficient(const FluidState &fluidState, | |
621 | int phaseIdx, | ||
622 | int compIdx) | ||
623 | { | ||
624 |
7/16✓ Branch 2 taken 15 times.
✗ Branch 3 not taken.
✓ Branch 11 taken 15 times.
✗ Branch 12 not taken.
✓ Branch 15 taken 15 times.
✗ Branch 16 not taken.
✓ Branch 18 taken 15 times.
✗ Branch 19 not taken.
✓ Branch 21 taken 15 times.
✗ Branch 22 not taken.
✓ Branch 23 taken 15 times.
✗ Branch 24 not taken.
✗ Branch 26 not taken.
✓ Branch 27 taken 15 times.
✗ Branch 29 not taken.
✗ Branch 30 not taken.
|
330 | DUNE_THROW(Dune::NotImplemented, "Diffusion coefficients"); |
625 | } | ||
626 | |||
627 | using Base<Scalar, ThisType>::binaryDiffusionCoefficient; | ||
628 | //! \copydoc Base<Scalar,ThisType>::binaryDiffusionCoefficient(const FluidState&,int,int,int) | ||
629 | template <class FluidState> | ||
630 | 1206942 | static Scalar binaryDiffusionCoefficient(const FluidState &fluidState, | |
631 | int phaseIdx, | ||
632 | int compIIdx, | ||
633 | int compJIdx) | ||
634 | |||
635 | { | ||
636 |
2/2✓ Branch 0 taken 301728 times.
✓ Branch 1 taken 905169 times.
|
1206942 | if (compIIdx > compJIdx) |
637 | { | ||
638 | using std::swap; | ||
639 | 301743 | swap(compIIdx, compJIdx); | |
640 | } | ||
641 | |||
642 | #ifndef NDEBUG | ||
643 |
3/4✓ Branch 0 taken 1206882 times.
✓ Branch 1 taken 15 times.
✓ Branch 2 taken 1206882 times.
✗ Branch 3 not taken.
|
1206942 | if (compIIdx == compJIdx || |
644 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1206882 times.
|
1206912 | phaseIdx > numPhases - 1 || |
645 | compJIdx > numComponents - 1) | ||
646 | { | ||
647 |
10/22✓ Branch 2 taken 15 times.
✗ Branch 3 not taken.
✓ Branch 11 taken 15 times.
✗ Branch 12 not taken.
✓ Branch 16 taken 15 times.
✗ Branch 17 not taken.
✓ Branch 20 taken 15 times.
✗ Branch 21 not taken.
✓ Branch 24 taken 15 times.
✗ Branch 25 not taken.
✓ Branch 27 taken 15 times.
✗ Branch 28 not taken.
✓ Branch 30 taken 15 times.
✗ Branch 31 not taken.
✓ Branch 33 taken 15 times.
✗ Branch 34 not taken.
✓ Branch 35 taken 15 times.
✗ Branch 36 not taken.
✗ Branch 38 not taken.
✓ Branch 39 taken 15 times.
✗ Branch 41 not taken.
✗ Branch 42 not taken.
|
420 | DUNE_THROW(Dune::InvalidStateException, |
648 | "Binary diffusion coefficient of components " | ||
649 | << compIIdx << " and " << compJIdx | ||
650 | << " in phase " << phaseIdx << " is undefined!\n"); | ||
651 | } | ||
652 | #endif | ||
653 | |||
654 |
2/2✓ Branch 0 taken 603426 times.
✓ Branch 1 taken 603426 times.
|
1206912 | Scalar T = fluidState.temperature(phaseIdx); |
655 |
2/2✓ Branch 0 taken 603426 times.
✓ Branch 1 taken 603426 times.
|
1206912 | Scalar p = fluidState.pressure(phaseIdx); |
656 | |||
657 | // liquid phase | ||
658 |
2/2✓ Branch 0 taken 603438 times.
✓ Branch 1 taken 603444 times.
|
1206912 | if (phaseIdx == liquidPhaseIdx) { |
659 |
4/4✓ Branch 0 taken 603434 times.
✓ Branch 1 taken 4 times.
✓ Branch 2 taken 301717 times.
✓ Branch 3 taken 301717 times.
|
603450 | if (compIIdx == H2OIdx && compJIdx == N2Idx) |
660 | 603442 | return BinaryCoeff::H2O_N2::liquidDiffCoeff(T, p); | |
661 |
3/4✓ Branch 0 taken 301717 times.
✓ Branch 1 taken 4 times.
✓ Branch 2 taken 301717 times.
✗ Branch 3 not taken.
|
301729 | if (compIIdx == H2OIdx && compJIdx == O2Idx) |
662 | 603442 | return BinaryCoeff::H2O_O2::liquidDiffCoeff(T, p); | |
663 |
10/22✓ Branch 2 taken 4 times.
✗ Branch 3 not taken.
✓ Branch 11 taken 4 times.
✗ Branch 12 not taken.
✓ Branch 16 taken 4 times.
✗ Branch 17 not taken.
✓ Branch 20 taken 4 times.
✗ Branch 21 not taken.
✓ Branch 24 taken 4 times.
✗ Branch 25 not taken.
✓ Branch 27 taken 4 times.
✗ Branch 28 not taken.
✓ Branch 30 taken 4 times.
✗ Branch 31 not taken.
✓ Branch 33 taken 4 times.
✗ Branch 34 not taken.
✓ Branch 35 taken 4 times.
✗ Branch 36 not taken.
✗ Branch 38 not taken.
✓ Branch 39 taken 4 times.
✗ Branch 41 not taken.
✗ Branch 42 not taken.
|
112 | DUNE_THROW(Dune::InvalidStateException, |
664 | "Binary diffusion coefficient of components " | ||
665 | << compIIdx << " and " << compJIdx | ||
666 | << " in phase " << phaseIdx << " is undefined!\n"); | ||
667 | } | ||
668 | // gas phase | ||
669 |
1/2✓ Branch 0 taken 603444 times.
✗ Branch 1 not taken.
|
603462 | if (phaseIdx == gasPhaseIdx) { |
670 |
4/4✓ Branch 0 taken 301725 times.
✓ Branch 1 taken 301719 times.
✓ Branch 2 taken 301719 times.
✓ Branch 3 taken 6 times.
|
603462 | if (compIIdx == H2OIdx && compJIdx == N2Idx) |
671 | 301725 | return BinaryCoeff::H2O_N2::gasDiffCoeff(T, p); | |
672 |
3/4✓ Branch 0 taken 6 times.
✓ Branch 1 taken 301719 times.
✓ Branch 2 taken 6 times.
✗ Branch 3 not taken.
|
301737 | if (compIIdx == H2OIdx && compJIdx == O2Idx) |
673 | 12 | return BinaryCoeff::H2O_O2::gasDiffCoeff(T, p); | |
674 |
2/4✓ Branch 0 taken 301719 times.
✗ Branch 1 not taken.
✓ Branch 2 taken 301719 times.
✗ Branch 3 not taken.
|
301725 | if(compIIdx == N2Idx && compJIdx == O2Idx) |
675 | 301725 | return BinaryCoeff::N2_O2::gasDiffCoeff(T, p); | |
676 | ✗ | DUNE_THROW(Dune::InvalidStateException, | |
677 | "Binary diffusion coefficient of components " | ||
678 | << compIIdx << " and " << compJIdx | ||
679 | << " in phase " << phaseIdx << " is undefined!\n"); | ||
680 | } | ||
681 | |||
682 | ✗ | DUNE_THROW(Dune::InvalidStateException, | |
683 | "Binary diffusion coefficient of components " | ||
684 | << compIIdx << " and " << compJIdx | ||
685 | << " in phase " << phaseIdx << " is undefined!\n"); | ||
686 | } | ||
687 | |||
688 | using Base<Scalar, ThisType>::enthalpy; | ||
689 | /*! | ||
690 | * \brief Given a phase's composition, temperature, pressure and | ||
691 | * density, calculate its specific enthalpy \f$\mathrm{[J/kg]}\f$. | ||
692 | * | ||
693 | * \note This fluid system neglects the contribution of | ||
694 | * gas-molecules in the liquid phase. This contribution is | ||
695 | * probably not big. Somebody would have to find out the | ||
696 | * enthalpy of solution for this system. ... | ||
697 | * | ||
698 | * \param fluidState An arbitrary fluid state | ||
699 | * \param phaseIdx The index of the fluid phase to consider | ||
700 | */ | ||
701 | template <class FluidState> | ||
702 | 278818 | static Scalar enthalpy(const FluidState &fluidState, | |
703 | int phaseIdx) | ||
704 | { | ||
705 |
2/2✓ Branch 0 taken 139404 times.
✓ Branch 1 taken 139404 times.
|
278818 | Scalar T = fluidState.temperature(phaseIdx); |
706 |
2/2✓ Branch 0 taken 139404 times.
✓ Branch 1 taken 139404 times.
|
278818 | Scalar p = fluidState.pressure(phaseIdx); |
707 | |||
708 | // liquid phase | ||
709 |
2/2✓ Branch 0 taken 139406 times.
✓ Branch 1 taken 139407 times.
|
278818 | if (phaseIdx == liquidPhaseIdx) { |
710 | 139408 | return H2O::liquidEnthalpy(T, p); | |
711 | } | ||
712 | // gas phase | ||
713 |
1/2✓ Branch 0 taken 139407 times.
✗ Branch 1 not taken.
|
139410 | else if (phaseIdx == gasPhaseIdx) |
714 | { | ||
715 | // assume ideal mixture: which means | ||
716 | // that the total specific enthalpy is the sum of the | ||
717 | // "partial specific enthalpies" of the components. | ||
718 | 139410 | Scalar hH2O = | |
719 | fluidState.massFraction(gasPhaseIdx, H2OIdx) | ||
720 | 278814 | * H2O::gasEnthalpy(T, p); | |
721 | 139410 | Scalar hN2 = | |
722 | fluidState.massFraction(gasPhaseIdx, N2Idx) | ||
723 | 278814 | * N2::gasEnthalpy(T,p); | |
724 | 139410 | Scalar hO2 = | |
725 | fluidState.massFraction(gasPhaseIdx, O2Idx) | ||
726 | 278814 | * O2::gasEnthalpy(T,p); | |
727 | 139410 | return hH2O + hN2 + hO2; | |
728 | } | ||
729 | else | ||
730 | ✗ | DUNE_THROW(Dune::InvalidStateException, "Invalid phase index " << phaseIdx); | |
731 | } | ||
732 | |||
733 | /*! | ||
734 | * \brief Returns the specific enthalpy \f$\mathrm{[J/kg]}\f$ of a component in a specific phase | ||
735 | * \param fluidState An arbitrary fluid state | ||
736 | * \param phaseIdx The index of the fluid phase to consider | ||
737 | * \param componentIdx The index of the component to consider | ||
738 | */ | ||
739 | template <class FluidState> | ||
740 | static Scalar componentEnthalpy(const FluidState &fluidState, | ||
741 | int phaseIdx, | ||
742 | int componentIdx) | ||
743 | { | ||
744 | const Scalar T = fluidState.temperature(phaseIdx); | ||
745 | const Scalar p = fluidState.pressure(phaseIdx); | ||
746 | |||
747 | if (phaseIdx == phase0Idx) | ||
748 | { | ||
749 | if (componentIdx == H2OIdx) | ||
750 | return H2O::liquidEnthalpy(T, p); | ||
751 | else if (componentIdx == N2Idx) | ||
752 | DUNE_THROW(Dune::NotImplemented, "Component enthalpy of nitrogen in liquid phase"); | ||
753 | else if (componentIdx == O2Idx) | ||
754 | DUNE_THROW(Dune::NotImplemented, "Component enthalpy of oxygen in liquid phase"); | ||
755 | else | ||
756 | DUNE_THROW(Dune::InvalidStateException, "Invalid component index " << componentIdx); | ||
757 | } | ||
758 | else if (phaseIdx == phase1Idx) | ||
759 | { | ||
760 | if (componentIdx == H2OIdx) | ||
761 | return H2O::gasEnthalpy(T, p); | ||
762 | else if (componentIdx == N2Idx) | ||
763 | return N2::gasEnthalpy(T, p); | ||
764 | else if (componentIdx == O2Idx) | ||
765 | return O2::gasEnthalpy(T, p); | ||
766 | DUNE_THROW(Dune::InvalidStateException, "Invalid component index " << componentIdx); | ||
767 | } | ||
768 | DUNE_THROW(Dune::InvalidStateException, "Invalid phase index " << phaseIdx); | ||
769 | } | ||
770 | |||
771 | using Base<Scalar, ThisType>::thermalConductivity; | ||
772 | /*! | ||
773 | * \brief Thermal conductivity of a fluid phase \f$\mathrm{[W/(m K)]}\f$. | ||
774 | * | ||
775 | * Use the conductivity of air and water as a first approximation. | ||
776 | * | ||
777 | * http://en.wikipedia.org/wiki/List_of_thermal_conductivities | ||
778 | * \param fluidState An arbitrary fluid state | ||
779 | * \param phaseIdx The index of the fluid phase to consider | ||
780 | */ | ||
781 | template <class FluidState> | ||
782 | 278818 | static Scalar thermalConductivity(const FluidState &fluidState, | |
783 | const int phaseIdx) | ||
784 | { | ||
785 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 278813 times.
|
278818 | assert(0 <= phaseIdx && phaseIdx < numPhases); |
786 |
2/2✓ Branch 0 taken 139404 times.
✓ Branch 1 taken 139404 times.
|
278818 | Scalar temperature = fluidState.temperature(phaseIdx) ; |
787 |
2/2✓ Branch 0 taken 139404 times.
✓ Branch 1 taken 139404 times.
|
278818 | Scalar pressure = fluidState.pressure(phaseIdx); |
788 | |||
789 |
2/2✓ Branch 0 taken 139406 times.
✓ Branch 1 taken 139407 times.
|
278818 | if (phaseIdx == liquidPhaseIdx) |
790 | { | ||
791 | 139408 | return H2O::liquidThermalConductivity(temperature, pressure); | |
792 | } | ||
793 | else | ||
794 | { | ||
795 | 139410 | Scalar lambdaPureN2 = N2::gasThermalConductivity(temperature, pressure); | |
796 | 139410 | Scalar lambdaPureO2 = O2::gasThermalConductivity(temperature, pressure); | |
797 | if (!Policy::useN2HeatConductivityAsGasMixtureHeatConductivity()) | ||
798 | { | ||
799 | 139408 | Scalar xN2 = fluidState.moleFraction(phaseIdx, N2Idx); | |
800 | 139408 | Scalar xO2 = fluidState.moleFraction(phaseIdx, O2Idx); | |
801 | 139408 | Scalar xH2O = fluidState.moleFraction(phaseIdx, H2OIdx); | |
802 | 139408 | Scalar lambdaN2 = xN2 * lambdaPureN2; | |
803 | 139408 | Scalar lambdaO2 = xO2 * lambdaPureO2; | |
804 | 139408 | Scalar partialPressure = pressure * xH2O; | |
805 | 139408 | Scalar lambdaH2O = xH2O * H2O::gasThermalConductivity(temperature, partialPressure); | |
806 | 139408 | return lambdaN2 + lambdaH2O + lambdaO2; | |
807 | } | ||
808 | else | ||
809 | 2 | return lambdaPureN2; | |
810 | } | ||
811 | } | ||
812 | |||
813 | using Base<Scalar, ThisType>::heatCapacity; | ||
814 | //! \copydoc Base<Scalar,ThisType>::heatCapacity(const FluidState&,int) | ||
815 | template <class FluidState> | ||
816 | 5 | static Scalar heatCapacity(const FluidState &fluidState, | |
817 | int phaseIdx) | ||
818 | { | ||
819 | 5 | if (phaseIdx == liquidPhaseIdx) { | |
820 | 2 | return H2O::liquidHeatCapacity(fluidState.temperature(phaseIdx), | |
821 | 2 | fluidState.pressure(phaseIdx)); | |
822 | } | ||
823 | |||
824 | Scalar c_pN2; | ||
825 | Scalar c_pO2; | ||
826 | Scalar c_pH2O; | ||
827 | // let the water and nitrogen components do things their own way | ||
828 | if (!Policy::useIdealGasHeatCapacities()) { | ||
829 | 2 | c_pN2 = N2::gasHeatCapacity(fluidState.temperature(phaseIdx), | |
830 | fluidState.pressure(phaseIdx) | ||
831 | 2 | * fluidState.moleFraction(phaseIdx, N2Idx)); | |
832 | |||
833 | 2 | c_pH2O = H2O::gasHeatCapacity(fluidState.temperature(phaseIdx), | |
834 | fluidState.pressure(phaseIdx) | ||
835 | 2 | * fluidState.moleFraction(phaseIdx, H2OIdx)); | |
836 | 2 | c_pO2 = O2::gasHeatCapacity(fluidState.temperature(phaseIdx), | |
837 | fluidState.pressure(phaseIdx) | ||
838 | 2 | * fluidState.moleFraction(phaseIdx, O2Idx)); | |
839 | } | ||
840 | else { | ||
841 | // assume an ideal gas for both components. See: | ||
842 | // | ||
843 | //http://en.wikipedia.org/wiki/Heat_capacity | ||
844 | 1 | Scalar c_vN2molar = Constants::R*2.39; | |
845 | 1 | Scalar c_pN2molar = Constants::R + c_vN2molar; | |
846 | |||
847 | 1 | Scalar c_vO2molar = Constants::R*2.43; | |
848 | 1 | Scalar c_pO2molar = Constants::R + c_vO2molar; | |
849 | |||
850 | 1 | Scalar c_vH2Omolar = Constants::R*3.37; // <- correct?? | |
851 | 1 | Scalar c_pH2Omolar = Constants::R + c_vH2Omolar; | |
852 | |||
853 | 1 | c_pN2 = c_pN2molar/molarMass(N2Idx); | |
854 | 1 | c_pO2 = c_pO2molar/molarMass(O2Idx); | |
855 | 1 | c_pH2O = c_pH2Omolar/molarMass(H2OIdx); | |
856 | } | ||
857 | |||
858 | // mangle all components together | ||
859 | return | ||
860 | 3 | c_pH2O*fluidState.massFraction(gasPhaseIdx, H2OIdx) | |
861 | 3 | + c_pN2*fluidState.massFraction(gasPhaseIdx, N2Idx) | |
862 | 3 | + c_pO2*fluidState.massFraction(gasPhaseIdx, O2Idx); | |
863 | } | ||
864 | |||
865 | }; | ||
866 | |||
867 | } // end namespace FluidSystems | ||
868 | } // end namespace Dumux | ||
869 | |||
870 | #endif | ||
871 |