Line | Branch | Exec | Source |
---|---|---|---|
1 | // -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- | ||
2 | // vi: set et ts=4 sw=4 sts=4: | ||
3 | // | ||
4 | // SPDX-FileCopyrightInfo: Copyright © DuMux Project contributors, see AUTHORS.md in root folder | ||
5 | // SPDX-License-Identifier: GPL-3.0-or-later | ||
6 | // | ||
7 | /*! | ||
8 | * \file | ||
9 | * \ingroup FluidStates | ||
10 | * \brief Represents all relevant thermodynamic quantities of a isothermal immiscible | ||
11 | * multi-phase fluid system | ||
12 | */ | ||
13 | #ifndef DUMUX_ISOIMMISCIBLE_FLUID_STATE_HH | ||
14 | #define DUMUX_ISOIMMISCIBLE_FLUID_STATE_HH | ||
15 | |||
16 | #include <limits> | ||
17 | #include <type_traits> | ||
18 | #include <dune/common/exceptions.hh> | ||
19 | |||
20 | namespace Dumux { | ||
21 | |||
22 | /*! | ||
23 | * \ingroup FluidStates | ||
24 | * \brief Represents all relevant thermodynamic quantities of a | ||
25 | * multi-phase fluid system assuming immiscibility and | ||
26 | * thermodynamic equilibrium. | ||
27 | */ | ||
28 | template <class ScalarType, class FluidSystem> | ||
29 | class IsothermalImmiscibleFluidState | ||
30 | { | ||
31 | public: | ||
32 | static constexpr int numPhases = FluidSystem::numPhases; | ||
33 | static constexpr int numComponents = FluidSystem::numComponents; | ||
34 | |||
35 | //! export the scalar type | ||
36 | using Scalar = ScalarType; | ||
37 | |||
38 | //! default constructor | ||
39 | IsothermalImmiscibleFluidState() = default; | ||
40 | |||
41 | //! copy constructor from arbitrary fluid state | ||
42 | template <class FluidState, typename std::enable_if_t<!std::is_same<FluidState, IsothermalImmiscibleFluidState>::value, int> = 0> | ||
43 | IsothermalImmiscibleFluidState(const FluidState &fs) | ||
44 | { assign(fs); } | ||
45 | |||
46 | // copy and move constructor / assignment operator | ||
47 | IsothermalImmiscibleFluidState(const IsothermalImmiscibleFluidState &fs) = default; | ||
48 | IsothermalImmiscibleFluidState(IsothermalImmiscibleFluidState &&fs) = default; | ||
49 | IsothermalImmiscibleFluidState& operator=(const IsothermalImmiscibleFluidState &fs) = default; | ||
50 | IsothermalImmiscibleFluidState& operator=(IsothermalImmiscibleFluidState &&fs) = default; | ||
51 | |||
52 | /***************************************************** | ||
53 | * Generic access to fluid properties | ||
54 | *****************************************************/ | ||
55 | |||
56 | /*! | ||
57 | * \brief Returns the index of the most wetting phase in the | ||
58 | * fluid-solid configuration (for porous medium systems). | ||
59 | */ | ||
60 | int wettingPhase() const { return wPhaseIdx_; } | ||
61 | |||
62 | /*! | ||
63 | * \brief Returns the saturation \f$S_\alpha\f$ of a fluid phase \f$\alpha\f$ in \f$\mathrm{[-]}\f$. | ||
64 | * | ||
65 | * The saturation is defined as the pore space occupied by the fluid divided by the total pore space: | ||
66 | * \f[S_\alpha := \frac{\phi \mathcal{V}_\alpha}{\phi \mathcal{V}}\f] | ||
67 | * | ||
68 | * \param phaseIdx the index of the phase | ||
69 | */ | ||
70 | Scalar saturation(int phaseIdx) const | ||
71 | 1 | { return saturation_[phaseIdx]; } | |
72 | |||
73 | /*! | ||
74 | * \brief Returns the molar fraction \f$x^\kappa_\alpha\f$ of the component \f$\kappa\f$ in fluid phase \f$\alpha\f$ in \f$\mathrm{[-]}\f$. | ||
75 | * | ||
76 | * The molar fraction \f$x^\kappa_\alpha\f$ is defined as the ratio of the number of molecules | ||
77 | * of component \f$\kappa\f$ and the total number of molecules of the phase \f$\alpha\f$. | ||
78 | * They are set either 1 or 0 in a phase since this is an immiscible fluidstate. | ||
79 | * \param phaseIdx the index of the phase | ||
80 | * \param compIdx the index of the component | ||
81 | */ | ||
82 | ✗ | Scalar moleFraction(int phaseIdx, int compIdx) const | |
83 | ✗ | { return (phaseIdx == compIdx) ? 1.0 : 0.0; } | |
84 | |||
85 | /*! | ||
86 | * \brief Returns the mass fraction \f$X^\kappa_\alpha\f$ of component \f$\kappa\f$ in fluid phase \f$\alpha\f$ in \f$\mathrm{[-]}\f$. | ||
87 | * | ||
88 | * They are set either 1 or 0 in a phase since this is an immiscible fluidstate. | ||
89 | * | ||
90 | * \param phaseIdx the index of the phase | ||
91 | * \param compIdx the index of the component | ||
92 | */ | ||
93 | ✗ | Scalar massFraction(int phaseIdx, int compIdx) const | |
94 | ✗ | { return (phaseIdx == compIdx) ? 1.0 : 0.0; } | |
95 | |||
96 | /*! | ||
97 | * \brief The average molar mass \f$\overline M_\alpha\f$ of phase \f$\alpha\f$ in \f$\mathrm{[kg/mol]}\f$ | ||
98 | * | ||
99 | * The average molar mass is the mean mass of a mole of the | ||
100 | * fluid at current composition. It is defined as the sum of the | ||
101 | * component's molar masses weighted by the current mole fraction: | ||
102 | * \f[\mathrm{ \overline M_\alpha = \sum_\kappa M^\kappa x_\alpha^\kappa}\f] | ||
103 | * | ||
104 | * Since this is an immiscible fluidstate we simply consider the molarMass of the | ||
105 | * pure component/phase. | ||
106 | */ | ||
107 | ✗ | Scalar averageMolarMass(int phaseIdx) const | |
108 |
0/2✗ Branch 0 not taken.
✗ Branch 1 not taken.
|
1 | { return FluidSystem::molarMass(/*compIdx=*/phaseIdx); } |
109 | |||
110 | /*! | ||
111 | * \brief The molar concentration \f$c^\kappa_\alpha\f$ of component \f$\kappa\f$ in fluid phase \f$\alpha\f$ in \f$\mathrm{[mol/m^3]}\f$ | ||
112 | * | ||
113 | * This quantity is usually called "molar concentration" or just | ||
114 | * "concentration", but there are many other (though less common) | ||
115 | * measures for concentration. | ||
116 | * | ||
117 | * http://en.wikipedia.org/wiki/Concentration | ||
118 | */ | ||
119 | Scalar molarity(int phaseIdx, int compIdx) const | ||
120 | 2 | { return molarDensity(phaseIdx)*moleFraction(phaseIdx, compIdx); } | |
121 | |||
122 | /*! | ||
123 | * \brief The fugacity \f$f^\kappa_\alpha\f$ of component \f$\kappa\f$ | ||
124 | * in fluid phase \f$\alpha\f$ in \f$\mathrm{[Pa]}\f$ | ||
125 | * @copydoc ImmiscibleFluidState::fugacity() | ||
126 | * To avoid numerical issues with code that assumes miscibility, | ||
127 | * we return a fugacity of 0 for components which do not mix with | ||
128 | * the specified phase. (Actually it is undefined, but for finite | ||
129 | * fugacity coefficients, the only way to get components | ||
130 | * completely out of a phase is 0 to feed it zero fugacity.) | ||
131 | */ | ||
132 | Scalar fugacity(int phaseIdx, int compIdx) const | ||
133 | 1 | { return phaseIdx == compIdx ? pressure(phaseIdx) : 0.0; } | |
134 | |||
135 | /*! | ||
136 | * \brief The fugacity coefficient \f$\Phi^\kappa_\alpha\f$ of component \f$\kappa\f$ in fluid phase \f$\alpha\f$ in \f$\mathrm{[-]}\f$ | ||
137 | * | ||
138 | * Since we assume immiscibility, the fugacity coefficients for | ||
139 | * the components which are not miscible with the phase is | ||
140 | * infinite. Beware that this will very likely break your code if | ||
141 | * you don't keep that in mind. | ||
142 | */ | ||
143 | ✗ | Scalar fugacityCoefficient(int phaseIdx, int compIdx) const | |
144 | ✗ | { return phaseIdx == compIdx ? 1.0 : std::numeric_limits<Scalar>::infinity(); } | |
145 | |||
146 | /*! | ||
147 | * \brief The molar volume \f$v_{mol,\alpha}\f$ of a fluid phase \f$\alpha\f$ in \f$\mathrm{[m^3/mol]}\f$ | ||
148 | * | ||
149 | * This quantity is the inverse of the molar density. | ||
150 | */ | ||
151 | Scalar molarVolume(int phaseIdx) const | ||
152 | 1 | { return 1.0/molarDensity(phaseIdx); } | |
153 | |||
154 | /*! | ||
155 | * \brief The mass density \f$\rho_\alpha\f$ of the fluid phase | ||
156 | * \f$\alpha\f$ in \f$\mathrm{[kg/m^3]}\f$ | ||
157 | */ | ||
158 | Scalar density(int phaseIdx) const | ||
159 | 1 | { return density_[phaseIdx]; } | |
160 | |||
161 | /*! | ||
162 | * \brief The molar density \f$\rho_{mol,\alpha}\f$ | ||
163 | * of a fluid phase \f$\alpha\f$ in \f$\mathrm{[mol/m^3]}\f$ | ||
164 | * | ||
165 | * The molar density is defined by the mass density \f$\rho_\alpha\f$ and the mean molar mass \f$\overline M_\alpha\f$: | ||
166 | * | ||
167 | * \f[\rho_{mol,\alpha} = \frac{\rho_\alpha}{\overline M_\alpha} \;.\f] | ||
168 | */ | ||
169 | Scalar molarDensity(int phaseIdx) const | ||
170 | 1 | { return molarDensity_[phaseIdx]; } | |
171 | |||
172 | /*! | ||
173 | * \brief The temperature of a fluid phase \f$\mathrm{[K]}\f$ | ||
174 | */ | ||
175 | ✗ | Scalar temperature(int phaseIdx) const | |
176 | ✗ | { return temperature_; } | |
177 | |||
178 | /*! | ||
179 | * \brief The temperature within the domain \f$\mathrm{[K]}\f$ | ||
180 | */ | ||
181 | Scalar temperature() const | ||
182 | { return temperature_; } | ||
183 | |||
184 | /*! | ||
185 | * \brief The pressure \f$p_\alpha\f$ of a fluid phase \f$\alpha\f$ in \f$\mathrm{[Pa]}\f$ | ||
186 | */ | ||
187 | Scalar pressure(int phaseIdx) const | ||
188 | 1 | { return pressure_[phaseIdx]; } | |
189 | |||
190 | /*! | ||
191 | * \brief The specific enthalpy \f$h_\alpha\f$ of a fluid phase \f$\alpha\f$ in \f$\mathrm{[J/kg]}\f$ | ||
192 | * This is not defined for an isothermal fluidstate. | ||
193 | */ | ||
194 | 1 | Scalar enthalpy(int phaseIdx) const | |
195 |
7/16✓ Branch 2 taken 1 times.
✗ Branch 3 not taken.
✓ Branch 11 taken 1 times.
✗ Branch 12 not taken.
✓ Branch 15 taken 1 times.
✗ Branch 16 not taken.
✓ Branch 18 taken 1 times.
✗ Branch 19 not taken.
✓ Branch 21 taken 1 times.
✗ Branch 22 not taken.
✓ Branch 23 taken 1 times.
✗ Branch 24 not taken.
✗ Branch 26 not taken.
✓ Branch 27 taken 1 times.
✗ Branch 29 not taken.
✗ Branch 30 not taken.
|
11 | { DUNE_THROW(Dune::NotImplemented,"No enthalpy() function defined for isothermal systems!"); } |
196 | |||
197 | /*! | ||
198 | * \brief The specific internal energy \f$u_\alpha\f$ of a fluid phase \f$\alpha\f$ in \f$\mathrm{[J/kg]}\f$ | ||
199 | * | ||
200 | * The specific internal energy is defined by the relation: | ||
201 | * \f[u_\alpha = h_\alpha - \frac{p_\alpha}{\rho_\alpha}\f] | ||
202 | * This is not defined for an isothermal fluidstate. | ||
203 | */ | ||
204 | 1 | Scalar internalEnergy(int phaseIdx) const | |
205 |
7/16✓ Branch 2 taken 1 times.
✗ Branch 3 not taken.
✓ Branch 11 taken 1 times.
✗ Branch 12 not taken.
✓ Branch 15 taken 1 times.
✗ Branch 16 not taken.
✓ Branch 18 taken 1 times.
✗ Branch 19 not taken.
✓ Branch 21 taken 1 times.
✗ Branch 22 not taken.
✓ Branch 23 taken 1 times.
✗ Branch 24 not taken.
✗ Branch 26 not taken.
✓ Branch 27 taken 1 times.
✗ Branch 29 not taken.
✗ Branch 30 not taken.
|
11 | { DUNE_THROW(Dune::NotImplemented,"No internalEnergy() function defined for isothermal systems!"); } |
206 | |||
207 | /*! | ||
208 | * \brief The dynamic viscosity \f$\mu_\alpha\f$ of fluid phase \f$\alpha\f$ in \f$\mathrm{[Pa s]}\f$ | ||
209 | */ | ||
210 | Scalar viscosity(int phaseIdx) const | ||
211 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | { return viscosity_[phaseIdx]; } |
212 | |||
213 | /***************************************************** | ||
214 | * Setter methods. Note that these are not part of the | ||
215 | * generic FluidState interface but specific for each | ||
216 | * implementation... | ||
217 | *****************************************************/ | ||
218 | |||
219 | /*! | ||
220 | * \brief Retrieve all parameters from an arbitrary fluid | ||
221 | * state. | ||
222 | * \param fs Fluidstate | ||
223 | */ | ||
224 | template <class FluidState> | ||
225 | void assign(const FluidState &fs) | ||
226 | { | ||
227 | for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) | ||
228 | { | ||
229 | pressure_[phaseIdx] = fs.pressure(phaseIdx); | ||
230 | saturation_[phaseIdx] = fs.saturation(phaseIdx); | ||
231 | density_[phaseIdx] = fs.density(phaseIdx); | ||
232 | molarDensity_[phaseIdx] = fs.molarDensity(phaseIdx); | ||
233 | viscosity_[phaseIdx] = fs.viscosity(phaseIdx); | ||
234 | } | ||
235 | temperature_ = fs.temperature(0); | ||
236 | } | ||
237 | |||
238 | /*! | ||
239 | * \brief Set the temperature \f$\mathrm{[K]]}\f$ of a fluid phase | ||
240 | */ | ||
241 | void setTemperature(Scalar value) | ||
242 | { temperature_ = value; } | ||
243 | |||
244 | /*! | ||
245 | * \brief Set the fluid pressure of a phase \f$\mathrm{[Pa]}\f$ | ||
246 | */ | ||
247 | void setPressure(int phaseIdx, Scalar value) | ||
248 | { pressure_[phaseIdx] = value; } | ||
249 | |||
250 | /*! | ||
251 | * \brief Set the saturation of a phase \f$\mathrm{[-]}\f$ | ||
252 | */ | ||
253 | void setSaturation(int phaseIdx, Scalar value) | ||
254 | { saturation_[phaseIdx] = value; } | ||
255 | |||
256 | /*! | ||
257 | * \brief Set the density of a phase \f$\mathrm{[kg/m^3]}\f$ | ||
258 | */ | ||
259 | void setDensity(int phaseIdx, Scalar value) | ||
260 | { density_[phaseIdx] = value; } | ||
261 | |||
262 | /*! | ||
263 | * \brief Set the molar density of a phase \f$\mathrm{[kg/m^3]}\f$ | ||
264 | */ | ||
265 | void setMolarDensity(int phaseIdx, Scalar value) | ||
266 | { molarDensity_[phaseIdx] = value; } | ||
267 | |||
268 | /*! | ||
269 | * \brief Set the dynamic viscosity of a phase \f$\mathrm{[Pa s]}\f$ | ||
270 | */ | ||
271 | void setViscosity(int phaseIdx, Scalar value) | ||
272 | { viscosity_[phaseIdx] = value; } | ||
273 | |||
274 | /*! | ||
275 | * \brief Set the index of the most wetting phase | ||
276 | */ | ||
277 | void setWettingPhase(int phaseIdx) | ||
278 | { wPhaseIdx_ = phaseIdx; } | ||
279 | protected: | ||
280 | Scalar pressure_[numPhases] = {}; | ||
281 | Scalar saturation_[numPhases] = {}; | ||
282 | Scalar density_[numPhases] = {}; | ||
283 | Scalar molarDensity_[numPhases] = {}; | ||
284 | Scalar viscosity_[numPhases] = {}; | ||
285 | Scalar temperature_ = 0.0; | ||
286 | |||
287 | int wPhaseIdx_{0}; | ||
288 | }; | ||
289 | |||
290 | } // end namespace Dumux | ||
291 | |||
292 | #endif | ||
293 |