Line | Branch | Exec | Source |
---|---|---|---|
1 | // -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- | ||
2 | // vi: set et ts=4 sw=4 sts=4: | ||
3 | // | ||
4 | // SPDX-FileCopyrightText: Copyright © DuMux Project contributors, see AUTHORS.md in root folder | ||
5 | // SPDX-License-Identifier: GPL-3.0-or-later | ||
6 | // | ||
7 | /*! | ||
8 | * \file | ||
9 | * \ingroup EffectiveHeatConductivity | ||
10 | * \brief Relation for the saturation-dependent effective thermal conductivity | ||
11 | */ | ||
12 | |||
13 | #ifndef DUMUX_MATERIAL_FLUIDMATRIX_THERMALCONDUCTIVITY_JOHANSEN_HH | ||
14 | #define DUMUX_MATERIAL_FLUIDMATRIX_THERMALCONDUCTIVITY_JOHANSEN_HH | ||
15 | |||
16 | #include <cmath> | ||
17 | #include <algorithm> | ||
18 | |||
19 | namespace Dumux { | ||
20 | |||
21 | /*! | ||
22 | * \addtogroup EffectiveHeatConductivity | ||
23 | * \copydetails Dumux::ThermalConductivityJohansen | ||
24 | */ | ||
25 | |||
26 | /*! | ||
27 | * \ingroup EffectiveHeatConductivity | ||
28 | * \brief Relation for the saturation-dependent effective thermal conductivity | ||
29 | * | ||
30 | * ### Johansen (two fluid phases) | ||
31 | * | ||
32 | * `ThermalConductivityJohansen` \cite johansen1977 computes the thermal conductivity of dry and the | ||
33 | * wet soil material and interpolates using the Kersten number. The effective wet conductivity | ||
34 | * is based on a geometric average and the effective dry conductivity is based on a semi-emprical | ||
35 | * relation and fitted to medium quartz sand. | ||
36 | * | ||
37 | * The effective thermal conductivity is given by | ||
38 | * \f[ | ||
39 | * \lambda_\text{eff} = \lambda_{\text{dry}} + \text{Ke} \left(\lambda_\text{wet} - \lambda_\text{dry}\right), \quad | ||
40 | * \lambda_\text{wet} = \lambda_\text{s}^{\left(1-\phi\right)} \lambda_\text{w}^\phi, \quad | ||
41 | * \lambda_\text{dry} = \frac{0.135 \rho_\text{s} \phi + 64.7}{\rho_\text{s} - 0.947 \rho_\text{s} \phi}, | ||
42 | * \f] | ||
43 | * where \f$ \phi \f$ is the porosity, \f$ \lambda_\alpha \f$ is the thermal conductivity | ||
44 | * of phase \f$ \alpha \f$, \f$ \rho_\text{s} \f$ denotes the density of the solid phase, and the | ||
45 | * Kersten number is given by \f$ \text{Ke} = (\kappa S_\text{w})/(1 + (1-\kappa) S_\text{w}) \f$, | ||
46 | * with the wetting phase saturation \f$ S_w \f$ and a fitting parameter \f$ \kappa = 15.6 \f$ | ||
47 | * for medium quartz sand. | ||
48 | */ | ||
49 | template<class Scalar> | ||
50 | class ThermalConductivityJohansen | ||
51 | { | ||
52 | public: | ||
53 | /*! | ||
54 | * \brief Effective thermal conductivity in \f$\mathrm{W/(m K)}\f$ for two phases | ||
55 | * \param volVars volume variables | ||
56 | * \return Effective thermal conductivity in \f$\mathrm{W/(m K)}\f$ for two phases | ||
57 | */ | ||
58 | template<class VolumeVariables> | ||
59 | 1001 | static Scalar effectiveThermalConductivity(const VolumeVariables& volVars) | |
60 | { | ||
61 | using FluidSystem = typename VolumeVariables::FluidSystem; | ||
62 | static_assert(FluidSystem::numPhases == 2, "ThermalConductivitySomerton only works for two-phase fluid systems!"); | ||
63 | // TODO: there should be an assertion that the indices are correct and 0 is actually the wetting phase! | ||
64 | |||
65 | 1001 | const Scalar sw = volVars.saturation(volVars.wettingPhase()); | |
66 | 1001 | const Scalar lambdaW = volVars.fluidThermalConductivity(volVars.wettingPhase()); | |
67 | 1001 | const Scalar lambdaN = volVars.fluidThermalConductivity(1-volVars.wettingPhase()); | |
68 | 1001 | const Scalar lambdaSolid = volVars.solidThermalConductivity(); | |
69 | 1001 | const Scalar porosity = volVars.porosity(); | |
70 | 1001 | const Scalar rhoSolid = volVars.solidDensity(); | |
71 | |||
72 | 1001 | return effectiveThermalConductivity_(sw, lambdaW, lambdaN, lambdaSolid, porosity, rhoSolid); | |
73 | } | ||
74 | |||
75 | private: | ||
76 | /*! | ||
77 | * \brief Effective thermal conductivity in \f$\mathrm{W/(m K)}\f$ for two phases | ||
78 | * | ||
79 | * \param Sw The saturation of the wetting phase | ||
80 | * \param lambdaW The thermal conductivity of the wetting phase in \f$\mathrm{W/(m K)}\f$ | ||
81 | * \param lambdaN The thermal conductivity of the nonwetting phase in \f$\mathrm{W/(m K)}\f$ | ||
82 | * \param lambdaSolid The thermal conductivity of the solid phase in \f$\mathrm{W/(m K)}\f$ | ||
83 | * \param porosity The porosity | ||
84 | * \param rhoSolid The density of solid phase in \f$\mathrm{kg/m^3}\f$ | ||
85 | * | ||
86 | * \return Effective thermal conductivity in \f$\mathrm{W/(m K)}\f$ for two phases | ||
87 | */ | ||
88 | 1001 | static Scalar effectiveThermalConductivity_(const Scalar Sw, | |
89 | const Scalar lambdaW, | ||
90 | const Scalar lambdaN, | ||
91 | const Scalar lambdaSolid, | ||
92 | const Scalar porosity, | ||
93 | const Scalar rhoSolid) | ||
94 | { | ||
95 | using std::max; | ||
96 |
2/2✓ Branch 0 taken 1000 times.
✓ Branch 1 taken 1 times.
|
1001 | const Scalar satW = max<Scalar>(0.0, Sw); |
97 | |||
98 | 1001 | const Scalar kappa = 15.6; // fitted to medium quartz sand | |
99 | 1001 | const Scalar rhoBulk = rhoSolid*porosity; | |
100 | |||
101 | using std::pow; | ||
102 | |||
103 | 1001 | const Scalar lambdaSaturated = lambdaSolid * pow(lambdaW / lambdaSolid, porosity); | |
104 | 1001 | const Scalar lambdaDry = (0.135*rhoBulk + 64.7)/(rhoSolid - 0.947*rhoBulk); | |
105 | 1001 | const Scalar Ke = (kappa*satW)/(1+(kappa-1)*satW);// Kersten number, equation 13 | |
106 | |||
107 | 1001 | return lambdaDry + Ke * (lambdaSaturated - lambdaDry); // equation 14 | |
108 | } | ||
109 | }; | ||
110 | |||
111 | } // end namespace Dumux | ||
112 | |||
113 | #endif | ||
114 |