GCC Code Coverage Report


Directory: ../../../builds/dumux-repositories/
File: /builds/dumux-repositories/dumux/dumux/porousmediumflow/tracer/localresidual.hh
Date: 2024-09-21 20:52:54
Exec Total Coverage
Lines: 89 95 93.7%
Functions: 30 58 51.7%
Branches: 97 151 64.2%

Line Branch Exec Source
1 // -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
2 // vi: set et ts=4 sw=4 sts=4:
3 //
4 // SPDX-FileCopyrightInfo: Copyright © DuMux Project contributors, see AUTHORS.md in root folder
5 // SPDX-License-Identifier: GPL-3.0-or-later
6 //
7 /*!
8 * \file
9 * \ingroup TracerModel
10 * \brief Element-wise calculation of the local residual for problems
11 * using fully implicit tracer model.
12 */
13
14 #ifndef DUMUX_TRACER_LOCAL_RESIDUAL_HH
15 #define DUMUX_TRACER_LOCAL_RESIDUAL_HH
16
17 #include <dune/common/exceptions.hh>
18
19 #include <dumux/common/properties.hh>
20 #include <dumux/common/parameters.hh>
21 #include <dumux/common/numeqvector.hh>
22 #include <dumux/discretization/method.hh>
23 #include <dumux/discretization/extrusion.hh>
24 #include <dumux/flux/referencesystemformulation.hh>
25
26 namespace Dumux {
27
28 /*!
29 * \ingroup TracerModel
30 * \brief Element-wise calculation of the local residual for problems
31 * using fully implicit tracer model.
32 */
33 template<class TypeTag>
34 class TracerLocalResidual: public GetPropType<TypeTag, Properties::BaseLocalResidual>
35 {
36 using ParentType = GetPropType<TypeTag, Properties::BaseLocalResidual>;
37 using Problem = GetPropType<TypeTag, Properties::Problem>;
38 using Scalar = GetPropType<TypeTag, Properties::Scalar>;
39 using GridGeometry = GetPropType<TypeTag, Properties::GridGeometry>;
40 using FVElementGeometry = typename GridGeometry::LocalView;
41 using SubControlVolume = typename GridGeometry::SubControlVolume;
42 using SubControlVolumeFace = typename GridGeometry::SubControlVolumeFace;
43 using Extrusion = Extrusion_t<GridGeometry>;
44 using NumEqVector = Dumux::NumEqVector<GetPropType<TypeTag, Properties::PrimaryVariables>>;
45 using FluxVariables = GetPropType<TypeTag, Properties::FluxVariables>;
46 using ElementFluxVariablesCache = typename GetPropType<TypeTag, Properties::GridFluxVariablesCache>::LocalView;
47 using GridView = typename GetPropType<TypeTag, Properties::GridGeometry>::GridView;
48 using Element = typename GridView::template Codim<0>::Entity;
49 using ElementVolumeVariables = typename GetPropType<TypeTag, Properties::GridVolumeVariables>::LocalView;
50 using VolumeVariables = GetPropType<TypeTag, Properties::VolumeVariables>;
51 using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
52 using ModelTraits = GetPropType<TypeTag, Properties::ModelTraits>;
53
54 static constexpr int numComponents = ModelTraits::numFluidComponents();
55 static constexpr bool useMoles = getPropValue<TypeTag, Properties::UseMoles>();
56 static constexpr int phaseIdx = 0;
57
58 public:
59
6/12
✓ Branch 1 taken 12660300 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 12660300 times.
✗ Branch 5 not taken.
✓ Branch 7 taken 950000 times.
✗ Branch 8 not taken.
✓ Branch 10 taken 950000 times.
✗ Branch 11 not taken.
✓ Branch 13 taken 2892000 times.
✗ Branch 14 not taken.
✓ Branch 16 taken 2892000 times.
✗ Branch 17 not taken.
35024600 using ParentType::ParentType;
60
61 /*!
62 * \brief Evaluates the amount of all conservation quantities
63 * (e.g. phase mass) within a sub-control volume.
64 *
65 * The result should be averaged over the volume (e.g. phase mass
66 * inside a sub control volume divided by the volume)
67 *
68 * \param problem The problem
69 * \param scv The sub control volume
70 * \param volVars The primary and secondary variables on the scv
71 */
72 30100000 NumEqVector computeStorage(const Problem& problem,
73 const SubControlVolume& scv,
74 const VolumeVariables& volVars) const
75 {
76
4/8
✓ Branch 0 taken 700000 times.
✗ Branch 1 not taken.
✓ Branch 2 taken 2026800 times.
✗ Branch 3 not taken.
✓ Branch 4 taken 21570800 times.
✗ Branch 5 not taken.
✓ Branch 6 taken 20244000 times.
✗ Branch 7 not taken.
74641600 NumEqVector storage(0.0);
77
78 // regularize saturation so we don't get singular matrices when the saturation is zero
79 // note that the fluxes will still be zero (zero effective diffusion coefficient),
80 // and we still solve the equation storage = 0 yielding the correct result
81 using std::max;
82
5/8
✓ Branch 0 taken 18800000 times.
✓ Branch 1 taken 12000000 times.
✓ Branch 2 taken 2026800 times.
✗ Branch 3 not taken.
✓ Branch 4 taken 21570800 times.
✗ Branch 5 not taken.
✓ Branch 6 taken 20244000 times.
✗ Branch 7 not taken.
74641600 const Scalar saturation = max(1e-8, volVars.saturation(phaseIdx));
83
84 // formulation with mole balances
85 if (useMoles)
86 {
87
2/2
✓ Branch 0 taken 5050000 times.
✓ Branch 1 taken 2525000 times.
7575000 for (int compIdx = 0; compIdx < numComponents; ++compIdx)
88 5050000 storage[compIdx] += volVars.porosity()
89 10100000 * volVars.molarDensity(phaseIdx)
90 5050000 * volVars.moleFraction(phaseIdx, compIdx)
91 5050000 * saturation;
92 }
93 // formulation with mass balances
94 else
95 {
96
2/2
✓ Branch 0 taken 55150000 times.
✓ Branch 1 taken 27575000 times.
166501000 for (int compIdx = 0; compIdx < numComponents; ++compIdx)
97 99691600 storage[compIdx] += volVars.porosity()
98
2/4
✓ Branch 0 taken 2026800 times.
✗ Branch 1 not taken.
✓ Branch 3 taken 20244000 times.
✗ Branch 4 not taken.
99691600 * volVars.density(phaseIdx)
99
2/4
✓ Branch 0 taken 2026800 times.
✗ Branch 1 not taken.
✓ Branch 3 taken 20244000 times.
✗ Branch 4 not taken.
99691600 * volVars.massFraction(phaseIdx, compIdx)
100
2/4
✓ Branch 0 taken 2026800 times.
✗ Branch 1 not taken.
✓ Branch 3 taken 20244000 times.
✗ Branch 4 not taken.
99691600 * saturation;
101 }
102
103 30100000 return storage;
104 }
105
106 /*!
107 * \brief Evaluates the total flux of all conservation quantities
108 * over a face of a sub-control volume.
109 *
110 * \param problem The problem
111 * \param element The element
112 * \param fvGeometry The finite volume geometry context
113 * \param elemVolVars The volume variables for all flux stencil elements
114 * \param scvf The sub control volume face
115 * \param elemFluxVarsCache The cache related to flux computation
116 */
117 77163492 NumEqVector computeFlux(const Problem& problem,
118 const Element& element,
119 const FVElementGeometry& fvGeometry,
120 const ElementVolumeVariables& elemVolVars,
121 const SubControlVolumeFace& scvf,
122 const ElementFluxVariablesCache& elemFluxVarsCache) const
123 {
124 77163492 FluxVariables fluxVars;
125 77163492 fluxVars.init(problem, element, fvGeometry, elemVolVars, scvf, elemFluxVarsCache);
126
127 77163492 NumEqVector flux(0.0);
128 77163492 const auto diffusiveFluxes = fluxVars.molecularDiffusionFlux(phaseIdx);
129
130 static constexpr auto referenceSystemFormulation = FluxVariables::MolecularDiffusionType::referenceSystemFormulation();
131
132 if (useMoles) // formulation with mole balances
133 {
134
3/3
✓ Branch 0 taken 1979600 times.
✓ Branch 1 taken 3009800 times.
✓ Branch 2 taken 1010000 times.
16083184 for (int compIdx = 0; compIdx < numComponents; ++compIdx)
135 {
136 // the physical quantities for which we perform upwinding
137 9041492 auto upwindTerm = [compIdx](const auto& volVars)
138 54174783 { return volVars.molarDensity()*volVars.moleFraction(phaseIdx, compIdx); };
139
140 // advective fluxes
141 9041492 flux[compIdx] += fluxVars.advectiveFlux(phaseIdx, upwindTerm);
142 // diffusive fluxes
143 if (referenceSystemFormulation == ReferenceSystemFormulation::massAveraged)
144 17040692 flux[compIdx] += diffusiveFluxes[compIdx]/FluidSystem::molarMass(compIdx);
145 else if (referenceSystemFormulation == ReferenceSystemFormulation::molarAveraged)
146 flux[compIdx] += diffusiveFluxes[compIdx];
147 else
148 DUNE_THROW(Dune::NotImplemented, "other reference systems than mass and molar averaged are not implemented");
149 }
150 }
151 else // formulation with mass balances
152 {
153
3/3
✓ Branch 0 taken 50421200 times.
✓ Branch 1 taken 112431800 times.
✓ Branch 2 taken 42310000 times.
205163000 for (int compIdx = 0; compIdx < numComponents; ++compIdx)
154 {
155 // the physical quantities for which we perform upwinding
156 135041200 auto upwindTerm = [compIdx](const auto& volVars)
157 589784800 { return volVars.density()*volVars.massFraction(phaseIdx, compIdx); };
158
159 // advective fluxes
160 135041200 flux[compIdx] += fluxVars.advectiveFlux(phaseIdx, upwindTerm);
161 // diffusive fluxes
162 if (referenceSystemFormulation == ReferenceSystemFormulation::massAveraged)
163 394718800 flux[compIdx] += diffusiveFluxes[compIdx];
164 else if (referenceSystemFormulation == ReferenceSystemFormulation::molarAveraged)
165 flux[compIdx] += diffusiveFluxes[compIdx]*FluidSystem::molarMass(compIdx);
166 else
167 DUNE_THROW(Dune::NotImplemented, "other reference systems than mass and molar averaged are not implemented");
168 }
169 }
170
171 if constexpr (ModelTraits::enableCompositionalDispersion())
172 {
173 1999800 const auto dispersionFluxes = fluxVars.compositionalDispersionFlux(phaseIdx);
174
3/3
✓ Branch 0 taken 1979600 times.
✓ Branch 1 taken 3009800 times.
✓ Branch 2 taken 1010000 times.
5999400 for (int compIdx = 0; compIdx < numComponents; ++compIdx)
175 {
176 11998800 flux[compIdx] += dispersionFluxes[compIdx];
177 }
178 }
179
180 77163492 return flux;
181 }
182
183 /*!
184 * \brief TODO docme!
185 *
186 * \param partialDerivatives TODO docme!
187 * \param problem The problem
188 * \param element The element
189 * \param fvGeometry The finite volume geometry context
190 * \param curVolVars The current volume variables
191 * \param scv The sub control volume
192 */
193 template<class PartialDerivativeMatrix>
194 1376800 void addStorageDerivatives(PartialDerivativeMatrix& partialDerivatives,
195 const Problem& problem,
196 const Element& element,
197 const FVElementGeometry& fvGeometry,
198 const VolumeVariables& curVolVars,
199 const SubControlVolume& scv) const
200 {
201 // regularize saturation so we don't get singular matrices when the saturation is zero
202 // note that the fluxes will still be zero (zero effective diffusion coefficient),
203 // and we still solve the equation storage = 0 yielding the correct result
204 using std::max;
205
1/2
✓ Branch 0 taken 1376800 times.
✗ Branch 1 not taken.
1376800 const auto saturation = max(1e-8, curVolVars.saturation(phaseIdx));
206
207 1376800 const auto porosity = curVolVars.porosity();
208 1376800 const auto rho = useMoles ? curVolVars.molarDensity() : curVolVars.density();
209 2753600 const auto d_storage = Extrusion::volume(fvGeometry, scv)*porosity*rho*saturation/this->timeLoop().timeStepSize();
210
211
2/2
✓ Branch 0 taken 1426800 times.
✓ Branch 1 taken 1376800 times.
2803600 for (int compIdx = 0; compIdx < numComponents; ++compIdx)
212 2953600 partialDerivatives[compIdx][compIdx] += d_storage;
213 1376800 }
214
215 /*!
216 * \brief TODO docme!
217 *
218 * \param partialDerivatives TODO docme!
219 * \param problem The problem
220 * \param element The element
221 * \param fvGeometry The finite volume geometry context
222 * \param curVolVars The current volume variables
223 * \param scv The sub control volume
224 */
225 template<class PartialDerivativeMatrix>
226 void addSourceDerivatives(PartialDerivativeMatrix& partialDerivatives,
227 const Problem& problem,
228 const Element& element,
229 const FVElementGeometry& fvGeometry,
230 const VolumeVariables& curVolVars,
231 const SubControlVolume& scv) const
232 {
233 // TODO maybe forward to the problem? -> necessary for reaction terms
234 }
235
236 template<class PartialDerivativeMatrices, class T = TypeTag>
237 std::enable_if_t<GetPropType<T, Properties::GridGeometry>::discMethod != DiscretizationMethods::box, void>
238 19600 addFluxDerivatives(PartialDerivativeMatrices& derivativeMatrices,
239 const Problem& problem,
240 const Element& element,
241 const FVElementGeometry& fvGeometry,
242 const ElementVolumeVariables& curElemVolVars,
243 const ElementFluxVariablesCache& elemFluxVarsCache,
244 const SubControlVolumeFace& scvf) const
245 {
246 if constexpr (FVElementGeometry::GridGeometry::discMethod != DiscretizationMethods::cctpfa)
247 DUNE_THROW(Dune::NotImplemented, "Analytic flux differentiation only implemented for tpfa");
248
249 // advective term: we do the same for all tracer components
250 auto rho = [](const VolumeVariables& volVars)
251 39200 { return useMoles ? volVars.molarDensity() : volVars.density(); };
252
253 // the volume flux
254 39200 const auto volFlux = problem.spatialParams().volumeFlux(element, fvGeometry, curElemVolVars, scvf);
255
256 // the upwind weight
257
5/6
✓ Branch 0 taken 22 times.
✓ Branch 1 taken 19578 times.
✓ Branch 3 taken 2 times.
✓ Branch 4 taken 20 times.
✓ Branch 6 taken 2 times.
✗ Branch 7 not taken.
19600 static const Scalar upwindWeight = getParam<Scalar>("Flux.UpwindWeight");
258
259 // get the inside and outside volvars
260 39200 const auto& insideVolVars = curElemVolVars[scvf.insideScvIdx()];
261 39200 const auto& outsideVolVars = curElemVolVars[scvf.outsideScvIdx()];
262
263
4/4
✓ Branch 0 taken 9800 times.
✓ Branch 1 taken 9800 times.
✓ Branch 2 taken 9800 times.
✓ Branch 3 taken 9800 times.
39200 const Scalar insideWeight = std::signbit(volFlux) ? (1.0 - upwindWeight) : upwindWeight;
264 19600 const Scalar outsideWeight = 1.0 - insideWeight;
265 39200 const auto advDerivII = volFlux*rho(insideVolVars)*insideWeight;
266 39200 const auto advDerivIJ = volFlux*rho(outsideVolVars)*outsideWeight;
267
268 // diffusive term
269 static constexpr auto referenceSystemFormulation = FluxVariables::MolecularDiffusionType::referenceSystemFormulation();
270 19600 const auto& fluxCache = elemFluxVarsCache[scvf];
271 19600 const Scalar rhoInside = massOrMolarDensity(insideVolVars, referenceSystemFormulation, phaseIdx);
272 19600 const Scalar rhoOutside = massOrMolarDensity(outsideVolVars, referenceSystemFormulation, phaseIdx);
273 19600 const Scalar massOrMolarDensity = 0.5*(rhoInside + rhoOutside);
274
275
2/2
✓ Branch 0 taken 39200 times.
✓ Branch 1 taken 19600 times.
58800 for (int compIdx = 0; compIdx < numComponents; ++compIdx)
276 {
277 // diffusive term
278 39200 Scalar diffDeriv = 0.0;
279 if (referenceSystemFormulation == ReferenceSystemFormulation::massAveraged)
280 {
281 39200 diffDeriv = useMoles ? massOrMolarDensity*fluxCache.diffusionTij(phaseIdx, compIdx)/FluidSystem::molarMass(compIdx)
282 39200 : massOrMolarDensity*fluxCache.diffusionTij(phaseIdx, compIdx);
283 }
284 else if (referenceSystemFormulation == ReferenceSystemFormulation::molarAveraged)
285 {
286 diffDeriv = useMoles ? massOrMolarDensity*fluxCache.diffusionTij(phaseIdx, compIdx)
287 : massOrMolarDensity*fluxCache.diffusionTij(phaseIdx, compIdx)*FluidSystem::molarMass(compIdx);
288 }
289 else
290 DUNE_THROW(Dune::NotImplemented, "other reference systems than mass and molar averaged are not implemented");
291
292
2/4
✓ Branch 2 taken 39200 times.
✗ Branch 3 not taken.
✓ Branch 4 taken 39200 times.
✗ Branch 5 not taken.
78400 derivativeMatrices[scvf.insideScvIdx()][compIdx][compIdx] += (advDerivII + diffDeriv);
293
1/2
✓ Branch 0 taken 39200 times.
✗ Branch 1 not taken.
39200 if (!scvf.boundary())
294 78400 derivativeMatrices[scvf.outsideScvIdx()][compIdx][compIdx] += (advDerivIJ - diffDeriv);
295 }
296 19600 }
297
298 template<class JacobianMatrix, class T = TypeTag>
299 std::enable_if_t<GetPropType<T, Properties::GridGeometry>::discMethod == DiscretizationMethods::box, void>
300 20000 addFluxDerivatives(JacobianMatrix& A,
301 const Problem& problem,
302 const Element& element,
303 const FVElementGeometry& fvGeometry,
304 const ElementVolumeVariables& curElemVolVars,
305 const ElementFluxVariablesCache& elemFluxVarsCache,
306 const SubControlVolumeFace& scvf) const
307 {
308
309 // advective term: we do the same for all tracer components
310 auto rho = [](const VolumeVariables& volVars)
311 40000 { return useMoles ? volVars.molarDensity() : volVars.density(); };
312
313 // the volume flux
314 40000 const auto volFlux = problem.spatialParams().volumeFlux(element, fvGeometry, curElemVolVars, scvf);
315
316 // the upwind weight
317
6/8
✓ Branch 0 taken 12 times.
✓ Branch 1 taken 19988 times.
✓ Branch 3 taken 2 times.
✓ Branch 4 taken 10 times.
✓ Branch 6 taken 2 times.
✗ Branch 7 not taken.
✓ Branch 9 taken 2 times.
✗ Branch 10 not taken.
20000 static const Scalar upwindWeight = getParamFromGroup<Scalar>(problem.paramGroup(), "Flux.UpwindWeight");
318
319 // get the inside and outside volvars
320
2/4
✗ Branch 0 not taken.
✓ Branch 1 taken 20000 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 20000 times.
40000 const auto& insideVolVars = curElemVolVars[scvf.insideScvIdx()];
321
3/4
✗ Branch 0 not taken.
✓ Branch 1 taken 20000 times.
✓ Branch 2 taken 10000 times.
✓ Branch 3 taken 10000 times.
20000 const auto& outsideVolVars = curElemVolVars[scvf.outsideScvIdx()];
322
323
4/4
✓ Branch 0 taken 10000 times.
✓ Branch 1 taken 10000 times.
✓ Branch 2 taken 10000 times.
✓ Branch 3 taken 10000 times.
40000 const auto insideWeight = std::signbit(volFlux) ? (1.0 - upwindWeight) : upwindWeight;
324 20000 const auto outsideWeight = 1.0 - insideWeight;
325 40000 const auto advDerivII = volFlux*rho(insideVolVars)*insideWeight;
326 40000 const auto advDerivIJ = volFlux*rho(outsideVolVars)*outsideWeight;
327
328 // diffusive term
329 static constexpr auto referenceSystemFormulation = FluxVariables::MolecularDiffusionType::referenceSystemFormulation();
330 using DiffusionType = GetPropType<T, Properties::MolecularDiffusionType>;
331 const auto ti = DiffusionType::calculateTransmissibilities(problem,
332 element,
333 fvGeometry,
334 curElemVolVars,
335 scvf,
336 40000 elemFluxVarsCache[scvf],
337 phaseIdx);
338
2/4
✗ Branch 0 not taken.
✓ Branch 1 taken 20000 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 20000 times.
40000 const auto& insideScv = fvGeometry.scv(scvf.insideScvIdx());
339
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 20000 times.
20000 const auto& outsideScv = fvGeometry.scv(scvf.outsideScvIdx());
340
341
2/2
✓ Branch 0 taken 40000 times.
✓ Branch 1 taken 20000 times.
60000 for (int compIdx = 0; compIdx < numComponents; ++compIdx)
342 {
343
4/4
✓ Branch 0 taken 160000 times.
✓ Branch 1 taken 40000 times.
✓ Branch 2 taken 160000 times.
✓ Branch 3 taken 40000 times.
400000 for (const auto& scv : scvs(fvGeometry))
344 {
345 // diffusive term
346 160000 auto diffDeriv = 0.0;
347 if (referenceSystemFormulation == ReferenceSystemFormulation::massAveraged)
348 160000 diffDeriv += useMoles ? ti[compIdx][scv.indexInElement()]/FluidSystem::molarMass(compIdx)
349
2/4
✓ Branch 1 taken 160000 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 160000 times.
✗ Branch 5 not taken.
320000 : ti[compIdx][scv.indexInElement()];
350 else if (referenceSystemFormulation == ReferenceSystemFormulation::molarAveraged)
351 diffDeriv += useMoles ? ti[compIdx][scv.indexInElement()]
352 : ti[compIdx][scv.indexInElement()]*FluidSystem::molarMass(compIdx);
353 else
354 DUNE_THROW(Dune::NotImplemented, "other reference systems than mass and molar averaged are not implemented");
355
4/8
✓ Branch 1 taken 160000 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 160000 times.
✗ Branch 5 not taken.
✓ Branch 7 taken 160000 times.
✗ Branch 8 not taken.
✓ Branch 10 taken 160000 times.
✗ Branch 11 not taken.
320000 A[insideScv.dofIndex()][scv.dofIndex()][compIdx][compIdx] += diffDeriv;
356
2/4
✓ Branch 1 taken 160000 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 160000 times.
✗ Branch 5 not taken.
320000 A[outsideScv.dofIndex()][scv.dofIndex()][compIdx][compIdx] -= diffDeriv;
357 }
358
359
4/8
✓ Branch 1 taken 40000 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 40000 times.
✗ Branch 5 not taken.
✓ Branch 7 taken 40000 times.
✗ Branch 8 not taken.
✓ Branch 10 taken 40000 times.
✗ Branch 11 not taken.
80000 A[insideScv.dofIndex()][insideScv.dofIndex()][compIdx][compIdx] += advDerivII;
360
4/8
✓ Branch 1 taken 40000 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 40000 times.
✗ Branch 5 not taken.
✓ Branch 7 taken 40000 times.
✗ Branch 8 not taken.
✓ Branch 10 taken 40000 times.
✗ Branch 11 not taken.
80000 A[insideScv.dofIndex()][outsideScv.dofIndex()][compIdx][compIdx] += advDerivIJ;
361
4/8
✓ Branch 1 taken 40000 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 40000 times.
✗ Branch 5 not taken.
✓ Branch 7 taken 40000 times.
✗ Branch 8 not taken.
✓ Branch 10 taken 40000 times.
✗ Branch 11 not taken.
80000 A[outsideScv.dofIndex()][outsideScv.dofIndex()][compIdx][compIdx] -= advDerivII;
362
2/4
✓ Branch 1 taken 40000 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 40000 times.
✗ Branch 5 not taken.
80000 A[outsideScv.dofIndex()][insideScv.dofIndex()][compIdx][compIdx] -= advDerivIJ;
363 }
364 20000 }
365
366 template<class PartialDerivativeMatrices>
367 void addCCDirichletFluxDerivatives(PartialDerivativeMatrices& derivativeMatrices,
368 const Problem& problem,
369 const Element& element,
370 const FVElementGeometry& fvGeometry,
371 const ElementVolumeVariables& curElemVolVars,
372 const ElementFluxVariablesCache& elemFluxVarsCache,
373 const SubControlVolumeFace& scvf) const
374 {
375 // do the same as for inner facets
376 addFluxDerivatives(derivativeMatrices, problem, element, fvGeometry,
377 curElemVolVars, elemFluxVarsCache, scvf);
378 }
379
380 template<class PartialDerivativeMatrices>
381 void addRobinFluxDerivatives(PartialDerivativeMatrices& derivativeMatrices,
382 const Problem& problem,
383 const Element& element,
384 const FVElementGeometry& fvGeometry,
385 const ElementVolumeVariables& curElemVolVars,
386 const ElementFluxVariablesCache& elemFluxVarsCache,
387 const SubControlVolumeFace& scvf) const
388 {
389 // TODO maybe forward to the problem?
390 }
391 };
392
393 } // end namespace Dumux
394
395 #endif
396