Line | Branch | Exec | Source |
---|---|---|---|
1 | // -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- | ||
2 | // vi: set et ts=4 sw=4 sts=4: | ||
3 | // | ||
4 | // SPDX-FileCopyrightText: Copyright © DuMux Project contributors, see AUTHORS.md in root folder | ||
5 | // SPDX-License-Identifier: GPL-3.0-or-later | ||
6 | // | ||
7 | /*! | ||
8 | * \file | ||
9 | * \ingroup NIModel | ||
10 | * \brief Element-wise calculation of the local residual for non-isothermal | ||
11 | * fully implicit models. See NIModel for the detailed description. | ||
12 | */ | ||
13 | |||
14 | #ifndef DUMUX_ENERGY_LOCAL_RESIDUAL_HH | ||
15 | #define DUMUX_ENERGY_LOCAL_RESIDUAL_HH | ||
16 | |||
17 | #include <dumux/common/properties.hh> | ||
18 | #include <dumux/common/typetraits/typetraits.hh> | ||
19 | #include <dumux/common/numeqvector.hh> | ||
20 | |||
21 | namespace Dumux { | ||
22 | |||
23 | // forward declaration | ||
24 | template<class TypeTag, bool enableEneryBalance> | ||
25 | class EnergyLocalResidualImplementation; | ||
26 | |||
27 | template<class TypeTag> | ||
28 | using EnergyLocalResidual = EnergyLocalResidualImplementation<TypeTag, GetPropType<TypeTag, Properties::ModelTraits>::enableEnergyBalance()>; | ||
29 | |||
30 | /*! | ||
31 | * \ingroup NIModel | ||
32 | * \brief Element-wise calculation of the energy residual for isothermal problems. | ||
33 | */ | ||
34 | template<class TypeTag> | ||
35 | class EnergyLocalResidualImplementation<TypeTag, false> | ||
36 | { | ||
37 | using Scalar = GetPropType<TypeTag, Properties::Scalar>; | ||
38 | using NumEqVector = Dumux::NumEqVector<GetPropType<TypeTag, Properties::PrimaryVariables>>; | ||
39 | using Problem = GetPropType<TypeTag, Properties::Problem>; | ||
40 | using VolumeVariables = GetPropType<TypeTag, Properties::VolumeVariables>; | ||
41 | using FVElementGeometry = typename GetPropType<TypeTag, Properties::GridGeometry>::LocalView; | ||
42 | using SubControlVolume = typename FVElementGeometry::SubControlVolume; | ||
43 | using FluxVariables = GetPropType<TypeTag, Properties::FluxVariables>; | ||
44 | |||
45 | public: | ||
46 | template <typename T = void> | ||
47 | static void fluidPhaseStorage(NumEqVector& storage, | ||
48 | const SubControlVolume& scv, | ||
49 | const VolumeVariables& volVars, | ||
50 | int phaseIdx) | ||
51 | { | ||
52 | static_assert(AlwaysFalse<T>::value, "Deprecated interface that has been removed! Use new interface with additional argument problem instead. Will be entirely removed after release 3.10."); | ||
53 | } | ||
54 | |||
55 | /*! | ||
56 | * \brief The energy storage in the fluid phase with index phaseIdx. | ||
57 | */ | ||
58 | static void fluidPhaseStorage(NumEqVector& storage, | ||
59 | const Problem& problem, | ||
60 | const SubControlVolume& scv, | ||
61 | const VolumeVariables& volVars, | ||
62 | int phaseIdx) | ||
63 | {} | ||
64 | |||
65 | /*! | ||
66 | * \brief The energy storage in the solid matrix. | ||
67 | * | ||
68 | * \param storage The mass of the component within the sub-control volume | ||
69 | * \param scv The sub-control volume | ||
70 | * \param volVars The volume variables | ||
71 | */ | ||
72 | static void solidPhaseStorage(NumEqVector& storage, | ||
73 | const SubControlVolume& scv, | ||
74 | const VolumeVariables& volVars) | ||
75 | {} | ||
76 | |||
77 | /*! | ||
78 | * \brief The advective phase energy fluxes. | ||
79 | * | ||
80 | * \param flux The flux | ||
81 | * \param fluxVars The flux variables. | ||
82 | * \param phaseIdx The phase index | ||
83 | */ | ||
84 | static void heatConvectionFlux(NumEqVector& flux, | ||
85 | FluxVariables& fluxVars, | ||
86 | int phaseIdx) | ||
87 | {} | ||
88 | |||
89 | /*! | ||
90 | * \brief The diffusive energy fluxes | ||
91 | * | ||
92 | * \param flux The flux | ||
93 | * \param fluxVars The flux variables. | ||
94 | */ | ||
95 | static void heatConductionFlux(NumEqVector& flux, | ||
96 | FluxVariables& fluxVars) | ||
97 | {} | ||
98 | |||
99 | /*! | ||
100 | * \brief The dispersive energy fluxes | ||
101 | * | ||
102 | * \param flux The flux | ||
103 | * \param fluxVars The flux variables. | ||
104 | */ | ||
105 | static void heatDispersionFlux(NumEqVector& flux, | ||
106 | FluxVariables& fluxVars) | ||
107 | {} | ||
108 | }; | ||
109 | |||
110 | /*! | ||
111 | * \ingroup NIModel | ||
112 | * \brief Element-wise calculation of the energy residual for non-isothermal problems. | ||
113 | */ | ||
114 | template<class TypeTag> | ||
115 | class EnergyLocalResidualImplementation<TypeTag, true> | ||
116 | { | ||
117 | using Scalar = GetPropType<TypeTag, Properties::Scalar>; | ||
118 | using NumEqVector = Dumux::NumEqVector<GetPropType<TypeTag, Properties::PrimaryVariables>>; | ||
119 | using Problem = GetPropType<TypeTag, Properties::Problem>; | ||
120 | using VolumeVariables = GetPropType<TypeTag, Properties::VolumeVariables>; | ||
121 | using FVElementGeometry = typename GetPropType<TypeTag, Properties::GridGeometry>::LocalView; | ||
122 | using SubControlVolume = typename FVElementGeometry::SubControlVolume; | ||
123 | using FluxVariables = GetPropType<TypeTag, Properties::FluxVariables>; | ||
124 | using GridView = typename GetPropType<TypeTag, Properties::GridGeometry>::GridView; | ||
125 | using Element = typename GridView::template Codim<0>::Entity; | ||
126 | using ElementVolumeVariables = typename GetPropType<TypeTag, Properties::GridVolumeVariables>::LocalView; | ||
127 | using ModelTraits = GetPropType<TypeTag, Properties::ModelTraits>; | ||
128 | using Indices = typename ModelTraits::Indices; | ||
129 | |||
130 | static constexpr int numPhases = ModelTraits::numFluidPhases(); | ||
131 | enum { energyEqIdx = Indices::energyEqIdx }; | ||
132 | |||
133 | public: | ||
134 | |||
135 | /*! | ||
136 | * \brief The energy storage in the fluid phase with index phaseIdx. | ||
137 | */ | ||
138 | 598485348 | static void fluidPhaseStorage(NumEqVector& storage, | |
139 | const Problem& problem, | ||
140 | const SubControlVolume& scv, | ||
141 | const VolumeVariables& volVars, | ||
142 | int phaseIdx) | ||
143 | { | ||
144 | // this implementation of the potential energy contribution is only correct | ||
145 | // if gravity vector is constant in space and time | ||
146 | 598485348 | const auto& x = scv.dofPosition(); | |
147 |
2/2✓ Branch 0 taken 1526400 times.
✓ Branch 1 taken 763200 times.
|
600774948 | const auto gravityPotential = x*problem.spatialParams().gravity(x); |
148 | |||
149 | 598485348 | storage[energyEqIdx] += volVars.porosity() | |
150 | 598485348 | * volVars.density(phaseIdx) | |
151 | 559018084 | * volVars.saturation(phaseIdx) | |
152 | 598485348 | * (volVars.internalEnergy(phaseIdx) - gravityPotential); | |
153 | 598070308 | } | |
154 | |||
155 | template <typename T = void> | ||
156 | static void fluidPhaseStorage(NumEqVector& storage, | ||
157 | const SubControlVolume& scv, | ||
158 | const VolumeVariables& volVars, | ||
159 | int phaseIdx) | ||
160 | { | ||
161 | static_assert(AlwaysFalse<T>::value, "Deprecated interface that has been removed! Use new interface with additional argument problem instead. Will be entirely removed after release 3.10."); | ||
162 | } | ||
163 | |||
164 | /*! | ||
165 | * \brief The energy storage in the solid matrix | ||
166 | * | ||
167 | * \param storage The mass of the component within the sub-control volume | ||
168 | * \param scv The sub-control volume | ||
169 | * \param volVars The volume variables | ||
170 | */ | ||
171 | 288215932 | static void solidPhaseStorage(NumEqVector& storage, | |
172 | const SubControlVolume& scv, | ||
173 | const VolumeVariables& volVars) | ||
174 | { | ||
175 | 288215932 | storage[energyEqIdx] += volVars.temperature() | |
176 | 288215932 | * volVars.solidHeatCapacity() | |
177 | 288215932 | * volVars.solidDensity() | |
178 | 288215932 | * (1.0 - volVars.porosity()); | |
179 | } | ||
180 | |||
181 | /*! | ||
182 | * \brief The advective phase energy fluxes | ||
183 | * | ||
184 | * \param flux The flux | ||
185 | * \param fluxVars The flux variables. | ||
186 | * \param phaseIdx The phase index | ||
187 | */ | ||
188 | 433170327 | static void heatConvectionFlux(NumEqVector& flux, | |
189 | FluxVariables& fluxVars, | ||
190 | int phaseIdx) | ||
191 | { | ||
192 | // this implementation of the potential energy contribution is only correct | ||
193 | // if gravity vector is constant in space and time | ||
194 | 433170327 | const auto& x = fluxVars.scvFace().ipGlobal(); | |
195 | 433170327 | const auto gravityPotential = x*fluxVars.problem().spatialParams().gravity(x); | |
196 | |||
197 |
2/4✓ Branch 0 taken 849821 times.
✗ Branch 1 not taken.
✓ Branch 2 taken 1135459 times.
✗ Branch 3 not taken.
|
840477358 | auto upwindTerm = [=](const auto& volVars){ |
198 |
2/4✓ Branch 0 taken 849821 times.
✗ Branch 1 not taken.
✓ Branch 2 taken 1135459 times.
✗ Branch 3 not taken.
|
409292311 | return volVars.density(phaseIdx)*volVars.mobility(phaseIdx) |
199 |
2/4✓ Branch 0 taken 849821 times.
✗ Branch 1 not taken.
✓ Branch 2 taken 1135459 times.
✗ Branch 3 not taken.
|
411277591 | * (volVars.enthalpy(phaseIdx) - gravityPotential); |
200 | }; | ||
201 | |||
202 | 433170327 | flux[energyEqIdx] += fluxVars.advectiveFlux(phaseIdx, upwindTerm); | |
203 | 433170327 | } | |
204 | |||
205 | /*! | ||
206 | * \brief The diffusive energy fluxes | ||
207 | * | ||
208 | * \param flux The flux | ||
209 | * \param fluxVars The flux variables. | ||
210 | */ | ||
211 | 212437125 | static void heatConductionFlux(NumEqVector& flux, | |
212 | FluxVariables& fluxVars) | ||
213 | { | ||
214 | 212437125 | flux[energyEqIdx] += fluxVars.heatConductionFlux(); | |
215 | } | ||
216 | |||
217 | /*! | ||
218 | * \brief The dispersive energy fluxes | ||
219 | * | ||
220 | * \param flux The flux | ||
221 | * \param fluxVars The flux variables. | ||
222 | */ | ||
223 | 5622400 | static void heatDispersionFlux(NumEqVector& flux, | |
224 | FluxVariables& fluxVars) | ||
225 | { | ||
226 | |||
227 | if constexpr (ModelTraits::enableThermalDispersion()) | ||
228 | { | ||
229 | 5622400 | flux[energyEqIdx] += fluxVars.thermalDispersionFlux(); | |
230 | } | ||
231 | } | ||
232 | |||
233 | |||
234 | /*! | ||
235 | * \brief heat transfer between the phases for nonequilibrium models | ||
236 | * | ||
237 | * \param source The source which ought to be simulated | ||
238 | * \param element An element which contains part of the control volume | ||
239 | * \param fvGeometry The finite-volume geometry | ||
240 | * \param elemVolVars The volume variables of the current element | ||
241 | * \param scv The sub-control volume over which we integrate the source term | ||
242 | */ | ||
243 | static void computeSourceEnergy(NumEqVector& source, | ||
244 | const Element& element, | ||
245 | const FVElementGeometry& fvGeometry, | ||
246 | const ElementVolumeVariables& elemVolVars, | ||
247 | const SubControlVolume &scv) | ||
248 | {} | ||
249 | }; | ||
250 | |||
251 | } // end namespace Dumux | ||
252 | |||
253 | #endif | ||
254 |