Line | Branch | Exec | Source |
---|---|---|---|
1 | // -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- | ||
2 | // vi: set et ts=4 sw=4 sts=4: | ||
3 | // | ||
4 | // SPDX-FileCopyrightInfo: Copyright © DuMux Project contributors, see AUTHORS.md in root folder | ||
5 | // SPDX-License-Identifier: GPL-3.0-or-later | ||
6 | // | ||
7 | |||
8 | #ifndef DUMUX_EXAMPLES_DIFFUSION_MODEL_HH | ||
9 | #define DUMUX_EXAMPLES_DIFFUSION_MODEL_HH | ||
10 | |||
11 | // In the file `model.hh`, we define the model equations and | ||
12 | // set all default model properties. The setup consist of three steps: | ||
13 | // 1. Create a model type tag (used to specialize properties) | ||
14 | // 2. Define the local residual class implementing the discrete equation | ||
15 | // 3. Specialize important properties of the model such that Dumux knows how to assemble the system matrix | ||
16 | // | ||
17 | // __Table of contents__ | ||
18 | // | ||
19 | // [TOC] | ||
20 | // | ||
21 | // We start in `model.hh` with the necessary header includes: | ||
22 | // [[details]] includes | ||
23 | #include <dune/common/fvector.hh> | ||
24 | #include <dumux/common/math.hh> | ||
25 | #include <dumux/common/properties.hh> | ||
26 | #include <dumux/common/numeqvector.hh> | ||
27 | #include <dumux/common/volumevariables.hh> | ||
28 | #include <dumux/discretization/method.hh> | ||
29 | // [[/details]] | ||
30 | // | ||
31 | // ## 1. Property Tag | ||
32 | // | ||
33 | // The property tag is simply an empty struct with the name `DiffusionModel` | ||
34 | // | ||
35 | // [[content]] | ||
36 | // [[codeblock]] | ||
37 | namespace Dumux::Properties::TTag { | ||
38 | //! The diffusion model tag that we can specialize properties for | ||
39 | struct DiffusionModel {}; | ||
40 | } // end namespace Dumux::Properties::TTag | ||
41 | // [[/codeblock]] | ||
42 | // [[/content]] | ||
43 | // | ||
44 | // ## 2. The local (element-wise) residual | ||
45 | // | ||
46 | // The local residual assembles the contribution to the residual for | ||
47 | // all degrees of freedom associated with an element. Here, we use the | ||
48 | // Box method which is based on $P_1$ basis functions (piece-wise linears) | ||
49 | // and the degrees of freedom are on the nodes. Each node is associated with | ||
50 | // exactly one sub control volume (`scv`) per element and several ($2$ in $\mathbb{R}^2$) | ||
51 | // sub control volume faces (`scvf`). In the local residual, we can implement the | ||
52 | // contribution for one `scv` (storage and source terms) or one `scvf` (flux terms). | ||
53 | // | ||
54 | // Let's have a look at the class implementation. | ||
55 | // | ||
56 | // [[content]] | ||
57 | // | ||
58 | // The class `DiffusionModelLocalResidual` inherits from something called `BaseLocalResidual`. | ||
59 | // This base class differs depending on the chosen discretization scheme. For the box method | ||
60 | // (which is a control-volume finite element scheme) used in this example, the property | ||
61 | // `BaseLocalResidual` is specialized to `CVFELocalResidual<TypeTag>` | ||
62 | // in [dumux/discretization/box.hh](https://git.iws.uni-stuttgart.de/dumux-repositories/dumux/-/blob/master/dumux/discretization/box.hh). | ||
63 | // Since this local residual only works with control-volume finite element schemes due to | ||
64 | // the flux implementation, we could have also chosen to inherit from `public CVFELocalResidual<TypeTag>`. | ||
65 | namespace Dumux { | ||
66 | template<class TypeTag> | ||
67 | class DiffusionModelLocalResidual | ||
68 | : public GetPropType<TypeTag, Properties::BaseLocalResidual> | ||
69 | { | ||
70 | // [[exclude]] | ||
71 | // the base local residual is selected depending on the chosen discretization scheme | ||
72 | using ParentType = GetPropType<TypeTag, Properties::BaseLocalResidual>; | ||
73 | using Scalar = GetPropType<TypeTag, Properties::Scalar>; | ||
74 | using Problem = GetPropType<TypeTag, Properties::Problem>; | ||
75 | using NumEqVector = Dumux::NumEqVector<GetPropType<TypeTag, Properties::PrimaryVariables>>; | ||
76 | |||
77 | using GridVariables = GetPropType<TypeTag, Properties::GridVariables>; | ||
78 | using VolumeVariables = typename GridVariables::GridVolumeVariables::VolumeVariables; | ||
79 | using ElementVolumeVariables = typename GridVariables::GridVolumeVariables::LocalView; | ||
80 | using ElementFluxVariablesCache = typename GridVariables::GridFluxVariablesCache::LocalView; | ||
81 | |||
82 | using GridGeometry = GetPropType<TypeTag, Properties::GridGeometry>; | ||
83 | using FVElementGeometry = typename GridGeometry::LocalView; | ||
84 | using SubControlVolume = typename GridGeometry::SubControlVolume; | ||
85 | using SubControlVolumeFace = typename GridGeometry::SubControlVolumeFace; | ||
86 | using GridView = typename GridGeometry::GridView; | ||
87 | using Element = typename GridView::template Codim<0>::Entity; | ||
88 | |||
89 | using ModelTraits = GetPropType<TypeTag, Properties::ModelTraits>; | ||
90 | using Indices = typename ModelTraits::Indices; | ||
91 | static constexpr int dimWorld = GridView::dimensionworld; | ||
92 | |||
93 | public: | ||
94 | 7344 | using ParentType::ParentType; | |
95 | // [[/exclude]] | ||
96 | // | ||
97 | // **Storage term:** Evaluate the rate of change of all conserved quantities | ||
98 | // [[codeblock]] | ||
99 | ✗ | NumEqVector computeStorage(const Problem& problem, | |
100 | const SubControlVolume& scv, | ||
101 | const VolumeVariables& volVars) const | ||
102 | { | ||
103 | 31680 | NumEqVector storage; | |
104 | 63360 | storage[Indices::massBalanceEqIdx] = volVars.priVar(Indices::concentrationIdx); | |
105 | ✗ | return storage; | |
106 | } | ||
107 | // [[/codeblock]] | ||
108 | |||
109 | // **Flux term:** Evaluate the fluxes over a face of a sub control volume. | ||
110 | // Here we evaluate the (integrated) flux | ||
111 | // | ||
112 | // ```math | ||
113 | // F_{K,\sigma} = -D \sum_{B \in \mathcal{B}_K} c_{h,B} \nabla N_B \cdot\boldsymbol{n} \vert \sigma \vert | ||
114 | // ```` | ||
115 | // | ||
116 | // [[codeblock]] | ||
117 | 15840 | NumEqVector computeFlux(const Problem& problem, | |
118 | const Element& element, | ||
119 | const FVElementGeometry& fvGeometry, | ||
120 | const ElementVolumeVariables& elemVolVars, | ||
121 | const SubControlVolumeFace& scvf, | ||
122 | const ElementFluxVariablesCache& elemFluxVarsCache) const | ||
123 | { | ||
124 | static_assert(DiscretizationMethods::isCVFE<typename GridGeometry::DiscretizationMethod>, | ||
125 | "This local residual is hard-coded to control-volume finite element schemes"); | ||
126 | |||
127 | // Compute ∇c at the integration point of this sub control volume face. | ||
128 | 15840 | const auto& fluxVarCache = elemFluxVarsCache[scvf]; | |
129 | 15840 | Dune::FieldVector<Scalar, dimWorld> gradConcentration(0.0); | |
130 |
4/4✓ Branch 0 taken 63360 times.
✓ Branch 1 taken 15840 times.
✓ Branch 2 taken 63360 times.
✓ Branch 3 taken 15840 times.
|
158400 | for (const auto& scv : scvs(fvGeometry)) |
131 | { | ||
132 | 63360 | const auto& volVars = elemVolVars[scv]; | |
133 | // v.axpy(a, w) means v += a*w | ||
134 | 253440 | gradConcentration.axpy( | |
135 | volVars.priVar(Indices::concentrationIdx), | ||
136 | fluxVarCache.gradN(scv.indexInElement()) | ||
137 | ); | ||
138 | } | ||
139 | |||
140 | 15840 | NumEqVector flux; | |
141 | |||
142 | // Compute the flux with `vtmv` (vector transposed times matrix times vector) or -n^T D ∇c A. | ||
143 | // The diffusion coefficient comes from the `problem` (see Part 2 of the example). | ||
144 | 31680 | flux[Indices::massBalanceEqIdx] = -1.0*vtmv( | |
145 | scvf.unitOuterNormal(), problem.diffusionCoefficient(), gradConcentration | ||
146 | 15840 | )*scvf.area(); | |
147 | |||
148 | 15840 | return flux; | |
149 | } | ||
150 | }; | ||
151 | } // end namespace Dumux | ||
152 | // [[/codeblock]] | ||
153 | // [[/content]] | ||
154 | // | ||
155 | // ## 3. The model properties | ||
156 | // | ||
157 | // By specializing properties for our type tag `DiffusionModel`, | ||
158 | // every other class that knows about the type tag (this will be | ||
159 | // for example the assembler or the problem), can extract the | ||
160 | // type information that we specify here. | ||
161 | // | ||
162 | // Note that these types can be overwritten for specific problem | ||
163 | // definitions if this is needed (we will show this on the next page). | ||
164 | // | ||
165 | // [[content]] | ||
166 | namespace Dumux::Properties { | ||
167 | |||
168 | // The type of the local residual is the class defined above | ||
169 | template<class TypeTag> | ||
170 | struct LocalResidual<TypeTag, TTag::DiffusionModel> | ||
171 | { using type = DiffusionModelLocalResidual<TypeTag>; }; | ||
172 | |||
173 | // The default scalar type is double | ||
174 | // we compute with double precision floating point numbers | ||
175 | template<class TypeTag> | ||
176 | struct Scalar<TypeTag, TTag::DiffusionModel> | ||
177 | { using type = double; }; | ||
178 | |||
179 | // The model traits specify some information about our equation system. | ||
180 | // Here we have just one equation. We still specify indices so in the | ||
181 | // places where we access primary variables, we can do so with a named variable. | ||
182 | template<class TypeTag> | ||
183 | struct ModelTraits<TypeTag, TTag::DiffusionModel> | ||
184 | { | ||
185 | struct type | ||
186 | { | ||
187 | struct Indices | ||
188 | { | ||
189 | static constexpr int concentrationIdx = 0; | ||
190 | static constexpr int massBalanceEqIdx = 0; | ||
191 | }; | ||
192 | |||
193 | static constexpr int numEq() { return 1; } | ||
194 | }; | ||
195 | }; | ||
196 | |||
197 | // The primary variable vector has entries of type `Scalar` and is | ||
198 | // as large as the number of equations (here 1) but we keep it general. | ||
199 | template<class TypeTag> | ||
200 | struct PrimaryVariables<TypeTag, TTag::DiffusionModel> | ||
201 | { | ||
202 | using type = Dune::FieldVector< | ||
203 | GetPropType<TypeTag, Properties::Scalar>, | ||
204 | GetPropType<TypeTag, Properties::ModelTraits>::numEq() | ||
205 | >; | ||
206 | }; | ||
207 | |||
208 | // The `BasicVolumeVariables` are the simplest class of volume variables. | ||
209 | // They only store one instance of `PrimaryVariables` for the | ||
210 | // degree of freedom (here: vertex dof) that they are attached to. | ||
211 | template<class TypeTag> | ||
212 | struct VolumeVariables<TypeTag, TTag::DiffusionModel> | ||
213 | { | ||
214 | struct Traits | ||
215 | { | ||
216 | using PrimaryVariables | ||
217 | = GetPropType<TypeTag, Properties::PrimaryVariables>; | ||
218 | }; | ||
219 | using type = BasicVolumeVariables<Traits>; | ||
220 | }; | ||
221 | |||
222 | } // end namespace Dumux::Properties | ||
223 | // [[/content]] | ||
224 | // [[exclude]] | ||
225 | #endif | ||
226 | // [[/exclude]] | ||
227 |