Line | Branch | Exec | Source |
---|---|---|---|
1 | // -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- | ||
2 | // vi: set et ts=4 sw=4 sts=4: | ||
3 | // | ||
4 | // SPDX-FileCopyrightInfo: Copyright © DuMux Project contributors, see AUTHORS.md in root folder | ||
5 | // SPDX-License-Identifier: GPL-3.0-or-later | ||
6 | // | ||
7 | /*! | ||
8 | * \file | ||
9 | * \ingroup Core | ||
10 | * \brief A monotone cubic spline | ||
11 | */ | ||
12 | #ifndef DUMUX_COMMON_MONOTONE_CUBIC_SPLINE_HH | ||
13 | #define DUMUX_COMMON_MONOTONE_CUBIC_SPLINE_HH | ||
14 | |||
15 | #include <cmath> | ||
16 | #include <cassert> | ||
17 | #include <iterator> | ||
18 | #include <vector> | ||
19 | #include <algorithm> | ||
20 | |||
21 | #include <dune/common/float_cmp.hh> | ||
22 | |||
23 | // Hermite basis functions | ||
24 | #include <dumux/common/cubicsplinehermitebasis.hh> | ||
25 | |||
26 | // for inversion | ||
27 | #include <dumux/nonlinear/findscalarroot.hh> | ||
28 | |||
29 | namespace Dumux { | ||
30 | |||
31 | /*! | ||
32 | * \ingroup Core | ||
33 | * \brief A monotone cubic spline | ||
34 | * \note Construction after Fritsch & Butland (1984) (see https://doi.org/10.1137/0905021) | ||
35 | * \note The resulting interpolation is globally monotone but only C^1 | ||
36 | */ | ||
37 | template<class Scalar = double> | ||
38 | class MonotoneCubicSpline | ||
39 | { | ||
40 | using Basis = CubicSplineHermiteBasis<Scalar>; | ||
41 | public: | ||
42 | /*! | ||
43 | * \brief Default constructor | ||
44 | */ | ||
45 |
12/24✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 1 times.
✗ Branch 4 not taken.
✓ Branch 5 taken 1 times.
✗ Branch 6 not taken.
✓ Branch 7 taken 1 times.
✗ Branch 8 not taken.
✓ Branch 9 taken 1 times.
✗ Branch 10 not taken.
✓ Branch 11 taken 1 times.
✗ Branch 12 not taken.
✓ Branch 13 taken 1 times.
✗ Branch 14 not taken.
✓ Branch 15 taken 1 times.
✗ Branch 16 not taken.
✓ Branch 17 taken 1 times.
✗ Branch 18 not taken.
✓ Branch 19 taken 1 times.
✗ Branch 20 not taken.
✓ Branch 21 taken 1 times.
✗ Branch 22 not taken.
✓ Branch 23 taken 1 times.
|
12 | MonotoneCubicSpline() = default; |
46 | |||
47 | /*! | ||
48 | * \brief Construct a monotone cubic spline from the control points (x[i], y[i]) | ||
49 | * \note if the data set is monotone, monotonicity is preserved | ||
50 | * \param x a vector of x-coordinates | ||
51 | * \param y a vector of y-coordinates | ||
52 | */ | ||
53 | 7 | MonotoneCubicSpline(const std::vector<Scalar>& x, const std::vector<Scalar>& y) | |
54 | 21 | { | |
55 |
1/2✓ Branch 1 taken 7 times.
✗ Branch 2 not taken.
|
7 | updatePoints(x, y); |
56 | 7 | } | |
57 | |||
58 | /*! | ||
59 | * \brief Create a monotone cubic spline from the control points (x[i], y[i]) | ||
60 | * \param x a vector of x-coordinates | ||
61 | * \param y a vector of y-coordinates | ||
62 | */ | ||
63 | 10 | void updatePoints(const std::vector<Scalar>& x, const std::vector<Scalar>& y) | |
64 | { | ||
65 | // check some requirements | ||
66 |
3/6✗ Branch 0 not taken.
✓ Branch 1 taken 10 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 10 times.
✗ Branch 4 not taken.
✓ Branch 5 taken 10 times.
|
30 | assert (x.size() == y.size()); |
67 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 10 times.
|
10 | assert (x.size() >=2); |
68 |
9/16✓ Branch 0 taken 10 times.
✗ Branch 1 not taken.
✓ Branch 2 taken 10 times.
✗ Branch 3 not taken.
✓ Branch 4 taken 10 times.
✗ Branch 5 not taken.
✓ Branch 6 taken 2 times.
✓ Branch 7 taken 8 times.
✓ Branch 8 taken 2 times.
✗ Branch 9 not taken.
✓ Branch 10 taken 2 times.
✗ Branch 11 not taken.
✓ Branch 12 taken 2 times.
✗ Branch 13 not taken.
✗ Branch 14 not taken.
✓ Branch 15 taken 2 times.
|
42 | assert (std::is_sorted(x.begin(), x.end()) || std::is_sorted(x.rbegin(), x.rend())); |
69 | |||
70 | // save a copy of the control points | ||
71 | 10 | x_ = x; | |
72 | 10 | y_ = y; | |
73 | |||
74 | // the number of control points | ||
75 | 10 | numPoints_ = x.size(); | |
76 | |||
77 | // whether we are increasing | ||
78 | 20 | increasingX_ = x_.back() > x_.front(); | |
79 | 20 | increasingY_ = y_.back() > y_.front(); | |
80 | |||
81 | // the slope at every control point | ||
82 | 10 | m_.resize(numPoints_); | |
83 | |||
84 | // compute slopes (see Fritsch & Butland (1984), Eq. (5)) | ||
85 | 10 | Scalar deltaX = (x[1]-x[0]); | |
86 | 10 | Scalar secant = m_.front() = (y[1]-y[0])/deltaX; | |
87 | 10 | Scalar prevDeltaX = deltaX; | |
88 | 10 | Scalar prevSecant = secant; | |
89 |
2/2✓ Branch 0 taken 336 times.
✓ Branch 1 taken 10 times.
|
346 | for (int i = 1; i < numPoints_-1; ++i, prevSecant = secant, prevDeltaX = deltaX) |
90 | { | ||
91 |
2/4✓ Branch 0 taken 336 times.
✗ Branch 1 not taken.
✓ Branch 2 taken 336 times.
✗ Branch 3 not taken.
|
672 | deltaX = (x[i+1]-x[i]); |
92 |
2/4✓ Branch 0 taken 336 times.
✗ Branch 1 not taken.
✓ Branch 2 taken 336 times.
✗ Branch 3 not taken.
|
672 | secant = (y[i+1]-y[i])/deltaX; |
93 | 336 | const auto alpha = (prevDeltaX + 2*deltaX)/(3*(prevDeltaX + deltaX)); | |
94 |
1/2✓ Branch 0 taken 336 times.
✗ Branch 1 not taken.
|
336 | m_[i] = prevSecant*secant > 0.0 ? prevSecant*secant/(alpha*secant + (1.0-alpha)*prevSecant) : 0.0; |
95 | } | ||
96 | 20 | m_.back() = secant; | |
97 | 10 | } | |
98 | |||
99 | /*! | ||
100 | * \brief Evaluate the y value at a given x value | ||
101 | * \param x the x-coordinate | ||
102 | * \note We extrapolate linearly if out of bounds | ||
103 | */ | ||
104 | 5015990 | Scalar eval(const Scalar x) const | |
105 | { | ||
106 |
12/12✓ Branch 0 taken 8340 times.
✓ Branch 1 taken 5007650 times.
✓ Branch 2 taken 8340 times.
✓ Branch 3 taken 5007650 times.
✓ Branch 4 taken 8000 times.
✓ Branch 5 taken 340 times.
✓ Branch 6 taken 5007652 times.
✓ Branch 7 taken 7998 times.
✓ Branch 8 taken 5007652 times.
✓ Branch 9 taken 7998 times.
✓ Branch 10 taken 2 times.
✓ Branch 11 taken 5007650 times.
|
10031980 | if ((x <= x_.front() && increasingX_) || (x >= x_.front() && !increasingX_)) |
107 | 1368 | return y_.front() + m_.front()*(x - x_.front()); | |
108 |
11/12✓ Branch 0 taken 7658 times.
✓ Branch 1 taken 5007990 times.
✓ Branch 2 taken 7658 times.
✓ Branch 3 taken 5007990 times.
✓ Branch 4 taken 7658 times.
✗ Branch 5 not taken.
✓ Branch 6 taken 5007982 times.
✓ Branch 7 taken 7666 times.
✓ Branch 8 taken 5007982 times.
✓ Branch 9 taken 7666 times.
✓ Branch 10 taken 334 times.
✓ Branch 11 taken 5007648 times.
|
10031296 | else if ((x > x_.back() && increasingX_) || (x < x_.back() && !increasingX_)) |
109 | 1336 | return y_.back() + m_.back()*(x - x_.back()); | |
110 | |||
111 | 5015314 | return eval_(x); | |
112 | } | ||
113 | |||
114 | /*! | ||
115 | * \brief Evaluate the first derivative dy/dx at a given x value | ||
116 | * \param x the x-coordinate | ||
117 | * \note We extrapolate linearly if out of bounds | ||
118 | */ | ||
119 | 4007992 | Scalar evalDerivative(const Scalar x) const | |
120 | { | ||
121 |
12/12✓ Branch 0 taken 4336 times.
✓ Branch 1 taken 4003656 times.
✓ Branch 2 taken 4336 times.
✓ Branch 3 taken 4003656 times.
✓ Branch 4 taken 4000 times.
✓ Branch 5 taken 336 times.
✓ Branch 6 taken 4003658 times.
✓ Branch 7 taken 3998 times.
✓ Branch 8 taken 4003658 times.
✓ Branch 9 taken 3998 times.
✓ Branch 10 taken 2 times.
✓ Branch 11 taken 4003656 times.
|
8015984 | if ((x <= x_.front() && increasingX_) || (x >= x_.front() && !increasingX_)) |
122 | 676 | return m_.front(); | |
123 |
11/12✓ Branch 0 taken 3662 times.
✓ Branch 1 taken 4003992 times.
✓ Branch 2 taken 3662 times.
✓ Branch 3 taken 4003992 times.
✓ Branch 4 taken 3662 times.
✗ Branch 5 not taken.
✓ Branch 6 taken 4003988 times.
✓ Branch 7 taken 3666 times.
✓ Branch 8 taken 4003988 times.
✓ Branch 9 taken 3666 times.
✓ Branch 10 taken 334 times.
✓ Branch 11 taken 4003654 times.
|
8015308 | else if ((x > x_.back() && increasingX_) || (x < x_.back() && !increasingX_)) |
124 | 668 | return m_.back(); | |
125 | |||
126 | 4007320 | return evalDerivative_(x); | |
127 | } | ||
128 | |||
129 | /*! | ||
130 | * \brief Evaluate the inverse function | ||
131 | * \param y the y-coordinate | ||
132 | * \note We extrapolate linearly if out of bounds | ||
133 | * \note Throws exception if inverse could not be found (e.g. not unique) | ||
134 | */ | ||
135 | 2007996 | Scalar evalInverse(const Scalar y) const | |
136 | { | ||
137 |
12/12✓ Branch 0 taken 2003998 times.
✓ Branch 1 taken 3998 times.
✓ Branch 2 taken 2003998 times.
✓ Branch 3 taken 3998 times.
✓ Branch 4 taken 2003996 times.
✓ Branch 5 taken 2 times.
✓ Branch 6 taken 4000 times.
✓ Branch 7 taken 2003994 times.
✓ Branch 8 taken 4000 times.
✓ Branch 9 taken 2003994 times.
✓ Branch 10 taken 2 times.
✓ Branch 11 taken 3998 times.
|
4015992 | if ((y <= y_.front() && increasingY_) || (y >= y_.front() && !increasingY_)) |
138 | 16 | return x_.front() + (y - y_.front())/m_.front(); | |
139 |
10/12✓ Branch 0 taken 2003992 times.
✓ Branch 1 taken 4000 times.
✓ Branch 2 taken 2003992 times.
✓ Branch 3 taken 4000 times.
✓ Branch 4 taken 2003992 times.
✗ Branch 5 not taken.
✓ Branch 6 taken 3996 times.
✓ Branch 7 taken 2003996 times.
✓ Branch 8 taken 3996 times.
✓ Branch 9 taken 2003996 times.
✗ Branch 10 not taken.
✓ Branch 11 taken 3996 times.
|
4015984 | else if ((y > y_.back() && increasingY_) || (y < y_.back() && !increasingY_)) |
140 | ✗ | return x_.back() + (y - y_.back())/m_.back(); | |
141 | |||
142 | 2007992 | return evalInverse_(y); | |
143 | } | ||
144 | |||
145 | private: | ||
146 | 5015314 | Scalar eval_(const Scalar x) const | |
147 | { | ||
148 | // interpolate parametrization parameter t in [0,1] | ||
149 | 5015314 | const auto lookUpIndex = lookUpIndex_(x_, x, increasingX_); | |
150 | 15045942 | const auto h = (x_[lookUpIndex] - x_[lookUpIndex-1]); | |
151 | 5015314 | const auto t = (x - x_[lookUpIndex-1])/h; | |
152 | 25076570 | return y_[lookUpIndex-1]*Basis::h00(t) + h*m_[lookUpIndex-1]*Basis::h10(t) | |
153 | 25076570 | + y_[lookUpIndex]*Basis::h01(t) + h*m_[lookUpIndex]*Basis::h11(t); | |
154 | } | ||
155 | |||
156 | 4007320 | Scalar evalDerivative_(const Scalar x) const | |
157 | { | ||
158 | // interpolate parametrization parameter t in [0,1] | ||
159 | 4007320 | const auto lookUpIndex = lookUpIndex_(x_, x, increasingX_); | |
160 | 12021960 | const auto h = (x_[lookUpIndex] - x_[lookUpIndex-1]); | |
161 | 4007320 | const auto t = (x - x_[lookUpIndex-1])/h; | |
162 | 4007320 | const auto dtdx = 1.0/h; | |
163 | 20036600 | return y_[lookUpIndex-1]*Basis::dh00(t)*dtdx + m_[lookUpIndex-1]*Basis::dh10(t) | |
164 | 20036600 | + y_[lookUpIndex]*Basis::dh01(t)*dtdx + m_[lookUpIndex]*Basis::dh11(t); | |
165 | } | ||
166 | |||
167 | 2007992 | Scalar evalInverse_(const Scalar y) const | |
168 | { | ||
169 | 2007992 | const auto lookUpIndex = lookUpIndex_(y_, y, increasingY_); | |
170 | 49995640 | auto localPolynomial = [&](const auto x) { | |
171 | // interpolate parametrization parameter t in [0,1] | ||
172 | 143962944 | const auto h = (x_[lookUpIndex] - x_[lookUpIndex-1]); | |
173 | 47987648 | const auto t = (x - x_[lookUpIndex-1])/h; | |
174 | 239938240 | return y - (y_[lookUpIndex-1]*Basis::h00(t) + h*m_[lookUpIndex-1]*Basis::h10(t) | |
175 | 239938240 | + y_[lookUpIndex]*Basis::h01(t) + h*m_[lookUpIndex]*Basis::h11(t)); | |
176 | }; | ||
177 | |||
178 | // use an epsilon for the bracket | ||
179 | 4015984 | const auto eps = (x_[lookUpIndex]-x_[lookUpIndex-1])*1e-5; | |
180 | 2007992 | return findScalarRootBrent(x_[lookUpIndex-1]-eps, x_[lookUpIndex]+eps, localPolynomial); | |
181 | } | ||
182 | |||
183 | 11030626 | auto lookUpIndex_(const std::vector<Scalar>& vec, const Scalar v, bool increasing) const | |
184 | { | ||
185 |
2/2✓ Branch 0 taken 9015304 times.
✓ Branch 1 taken 2015322 times.
|
11030626 | return increasing ? lookUpIndexIncreasing_(vec, v) : lookUpIndexDecreasing_(vec, v); |
186 | } | ||
187 | |||
188 | 9015304 | auto lookUpIndexIncreasing_(const std::vector<Scalar>& vec, const Scalar v) const | |
189 | { | ||
190 |
2/4✓ Branch 0 taken 9015304 times.
✗ Branch 1 not taken.
✓ Branch 2 taken 9015304 times.
✗ Branch 3 not taken.
|
45076520 | const auto lookUpIndex = std::distance(vec.begin(), std::lower_bound(vec.begin(), vec.end(), v)); |
191 |
3/6✓ Branch 0 taken 9015304 times.
✗ Branch 1 not taken.
✗ Branch 2 not taken.
✓ Branch 3 taken 9015304 times.
✗ Branch 4 not taken.
✓ Branch 5 taken 9015304 times.
|
9015304 | assert(lookUpIndex != 0 && lookUpIndex < vec.size()); |
192 | 9015304 | return lookUpIndex; | |
193 | } | ||
194 | |||
195 | 2015322 | auto lookUpIndexDecreasing_(const std::vector<Scalar>& vec, const Scalar v) const | |
196 | { | ||
197 |
2/4✓ Branch 4 taken 2015322 times.
✗ Branch 5 not taken.
✓ Branch 6 taken 2015322 times.
✗ Branch 7 not taken.
|
8061288 | const auto lookUpIndex = vec.size() - std::distance(vec.rbegin(), std::upper_bound(vec.rbegin(), vec.rend(), v)); |
198 |
3/6✓ Branch 0 taken 2015322 times.
✗ Branch 1 not taken.
✗ Branch 2 not taken.
✓ Branch 3 taken 2015322 times.
✗ Branch 4 not taken.
✓ Branch 5 taken 2015322 times.
|
2015322 | assert(lookUpIndex != 0 && lookUpIndex < vec.size()); |
199 | 2015322 | return lookUpIndex; | |
200 | } | ||
201 | |||
202 | std::vector<Scalar> x_; //!< the x-coordinates | ||
203 | std::vector<Scalar> y_; //!< the y-coordinates | ||
204 | std::vector<Scalar> m_; //!< the slope for each control point | ||
205 | std::size_t numPoints_; //!< the number of control points | ||
206 | bool increasingX_; //!< if we are increasing monotone or not | ||
207 | bool increasingY_; //!< if we are increasing monotone or not | ||
208 | }; | ||
209 | |||
210 | } // end namespace Dumux | ||
211 | |||
212 | #endif | ||
213 |