Line | Branch | Exec | Source |
---|---|---|---|
1 | // -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- | ||
2 | // vi: set et ts=4 sw=4 sts=4: | ||
3 | // | ||
4 | // SPDX-FileCopyrightInfo: Copyright © DuMux Project contributors, see AUTHORS.md in root folder | ||
5 | // SPDX-License-Identifier: GPL-3.0-or-later | ||
6 | // | ||
7 | /*! | ||
8 | * \file | ||
9 | * \ingroup Components | ||
10 | * \brief Properties of pure molecular nitrogen \f$N_2\f$. | ||
11 | */ | ||
12 | #ifndef DUMUX_N2_HH | ||
13 | #define DUMUX_N2_HH | ||
14 | |||
15 | #include <dumux/material/idealgas.hh> | ||
16 | |||
17 | #include <cmath> | ||
18 | |||
19 | #include <dumux/material/components/base.hh> | ||
20 | #include <dumux/material/components/gas.hh> | ||
21 | #include <dumux/material/components/shomate.hh> | ||
22 | |||
23 | namespace Dumux { | ||
24 | namespace Components { | ||
25 | |||
26 | /*! | ||
27 | * \ingroup Components | ||
28 | * \brief Properties of pure molecular nitrogen \f$N_2\f$. | ||
29 | * | ||
30 | * \tparam Scalar The type used for scalar values | ||
31 | */ | ||
32 | template <class Scalar> | ||
33 | class N2 | ||
34 | : public Components::Base<Scalar, N2<Scalar> > | ||
35 | , public Components::Gas<Scalar, N2<Scalar> > | ||
36 | { | ||
37 | using IdealGas = Dumux::IdealGas<Scalar>; | ||
38 | using ShomateMethod = Dumux::ShomateMethod<Scalar, 3>; // 3 regions | ||
39 | |||
40 | public: | ||
41 | static const ShomateMethod shomateMethod; | ||
42 | /*! | ||
43 | * \brief A human readable name for nitrogen. | ||
44 | */ | ||
45 | static std::string name() | ||
46 |
22/42✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 1 times.
✓ Branch 4 taken 1 times.
✗ Branch 5 not taken.
✓ Branch 6 taken 1 times.
✓ Branch 7 taken 1 times.
✗ Branch 8 not taken.
✓ Branch 10 taken 1 times.
✗ Branch 11 not taken.
✓ Branch 13 taken 1 times.
✗ Branch 14 not taken.
✓ Branch 16 taken 1 times.
✗ Branch 17 not taken.
✓ Branch 19 taken 1 times.
✗ Branch 20 not taken.
✓ Branch 22 taken 1 times.
✗ Branch 23 not taken.
✓ Branch 25 taken 1 times.
✗ Branch 26 not taken.
✓ Branch 28 taken 1 times.
✗ Branch 29 not taken.
✓ Branch 31 taken 1 times.
✗ Branch 32 not taken.
✓ Branch 34 taken 1 times.
✗ Branch 35 not taken.
✓ Branch 37 taken 1 times.
✗ Branch 38 not taken.
✓ Branch 40 taken 1 times.
✗ Branch 41 not taken.
✓ Branch 43 taken 1 times.
✗ Branch 44 not taken.
✓ Branch 46 taken 1 times.
✗ Branch 47 not taken.
✓ Branch 49 taken 1 times.
✗ Branch 50 not taken.
✓ Branch 52 taken 1 times.
✗ Branch 53 not taken.
✓ Branch 55 taken 1 times.
✗ Branch 56 not taken.
✓ Branch 58 taken 1 times.
✗ Branch 59 not taken.
|
396 | { return "N2"; } |
47 | |||
48 | /*! | ||
49 | * \brief The molar mass in \f$\mathrm{[kg/mol]}\f$ of molecular nitrogen. | ||
50 | */ | ||
51 | static constexpr Scalar molarMass() | ||
52 | { return 28.0134e-3;} | ||
53 | |||
54 | /*! | ||
55 | * \brief Returns the critical temperature \f$\mathrm{[K]}\f$ of molecular nitrogen | ||
56 | */ | ||
57 | static Scalar criticalTemperature() | ||
58 | { return 126.192; /* [K] */ } | ||
59 | |||
60 | /*! | ||
61 | * \brief Returns the critical pressure \f$\mathrm{[Pa]}\f$ of molecular nitrogen. | ||
62 | */ | ||
63 | static Scalar criticalPressure() | ||
64 | { return 3.39858e6; /* [N/m^2] */ } | ||
65 | |||
66 | /*! | ||
67 | * \brief Returns the temperature \f$\mathrm{[K]}\f$ at molecular nitrogen's triple point. | ||
68 | */ | ||
69 | static Scalar tripleTemperature() | ||
70 | { return 63.151; /* [K] */ } | ||
71 | |||
72 | /*! | ||
73 | * \brief Returns the pressure \f$\mathrm{[Pa]}\f$ at molecular nitrogen's triple point. | ||
74 | */ | ||
75 | static Scalar triplePressure() | ||
76 | { return 12.523e3; /* [N/m^2] */ } | ||
77 | |||
78 | /*! | ||
79 | * \brief The vapor pressure in \f$\mathrm{[Pa]}\f$ of pure molecular nitrogen | ||
80 | * at a given temperature. | ||
81 | * | ||
82 | * \param T temperature of component in \f$\mathrm{[K]}\f$ | ||
83 | * | ||
84 | * Taken from: | ||
85 | * | ||
86 | * R. Span, E.W. Lemmon, et al. (2000 ,pp. 1361-1433) \cite span2000 | ||
87 | */ | ||
88 | 3 | static Scalar vaporPressure(Scalar T) | |
89 | { | ||
90 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 3 times.
|
3 | if (T > criticalTemperature()) |
91 | return criticalPressure(); | ||
92 | ✗ | if (T < tripleTemperature()) | |
93 | return 0; // N2 is solid: We don't take sublimation into | ||
94 | // account | ||
95 | |||
96 | // note: this is the ancillary equation given on page 1368 | ||
97 | using std::sqrt; | ||
98 | ✗ | Scalar sigma = Scalar(1.0) - T/criticalTemperature(); | |
99 | ✗ | Scalar sqrtSigma = sqrt(sigma); | |
100 | ✗ | const Scalar N1 = -6.12445284; | |
101 | ✗ | const Scalar N2 = 1.26327220; | |
102 | ✗ | const Scalar N3 = -0.765910082; | |
103 | ✗ | const Scalar N4 = -1.77570564; | |
104 | |||
105 | using std::exp; | ||
106 | return | ||
107 | ✗ | criticalPressure() * | |
108 | ✗ | exp(criticalTemperature()/T* | |
109 | ✗ | (sigma*(N1 + | |
110 | ✗ | sqrtSigma*N2 + | |
111 | ✗ | sigma*(sqrtSigma*N3 + | |
112 | ✗ | sigma*sigma*sigma*N4)))); | |
113 | } | ||
114 | |||
115 | /*! | ||
116 | * \brief The density \f$\mathrm{[kg/m^3]}\f$ of \f$N_2\f$ gas at a given pressure and temperature. | ||
117 | * | ||
118 | * \param temperature temperature of component in \f$\mathrm{[K]}\f$ | ||
119 | * \param pressure pressure of component in \f$\mathrm{[Pa]}\f$ | ||
120 | */ | ||
121 | static Scalar gasDensity(Scalar temperature, Scalar pressure) | ||
122 | { | ||
123 | // Assume an ideal gas | ||
124 |
4/4✓ Branch 0 taken 1 times.
✓ Branch 1 taken 2 times.
✓ Branch 2 taken 1 times.
✓ Branch 3 taken 2 times.
|
23878580 | return IdealGas::density(molarMass(), temperature, pressure); |
125 | } | ||
126 | |||
127 | /*! | ||
128 | * \brief The molar density of \f$N_2\f$ gas in \f$\mathrm{[mol/m^3]}\f$ at a given pressure and temperature. | ||
129 | * | ||
130 | * \param temperature temperature of component in \f$\mathrm{[K]}\f$ | ||
131 | * \param pressure pressure of component in \f$\mathrm{[Pa]}\f$ | ||
132 | * | ||
133 | */ | ||
134 | static Scalar gasMolarDensity(Scalar temperature, Scalar pressure) | ||
135 | 23878354 | { return IdealGas::molarDensity(temperature, pressure); } | |
136 | |||
137 | /*! | ||
138 | * \brief Returns true if the gas phase is assumed to be compressible | ||
139 | */ | ||
140 | static constexpr bool gasIsCompressible() | ||
141 | { return true; } | ||
142 | |||
143 | /*! | ||
144 | * \brief Returns true if the gas phase is assumed to be ideal | ||
145 | */ | ||
146 | static constexpr bool gasIsIdeal() | ||
147 | { return true; } | ||
148 | |||
149 | /*! | ||
150 | * \brief The pressure of gaseous \f$N_2\f$ in \f$\mathrm{[Pa]}\f$ at a given density and temperature. | ||
151 | * | ||
152 | * \param temperature temperature of component in \f$\mathrm{[K]}\f$ | ||
153 | * \param density density of component in \f$\mathrm{[kg/m^3]}\f$ | ||
154 | */ | ||
155 | static Scalar gasPressure(Scalar temperature, Scalar density) | ||
156 | { | ||
157 | // Assume an ideal gas | ||
158 | 18 | return IdealGas::pressure(temperature, density/molarMass()); | |
159 | } | ||
160 | |||
161 | /*! | ||
162 | * \brief Specific enthalpy \f$\mathrm{[J/kg]}\f$ of pure nitrogen gas. | ||
163 | * Shomate Equation is used for a temperature range of 100K to 6000K. | ||
164 | * | ||
165 | * \param temperature temperature of component in \f$\mathrm{[K]}\f$ | ||
166 | * \param pressure pressure of component in \f$\mathrm{[Pa]}\f$ | ||
167 | */ | ||
168 | ✗ | static const Scalar gasEnthalpy(Scalar temperature, | |
169 | Scalar pressure) | ||
170 | { | ||
171 |
1/2✓ Branch 2 taken 101 times.
✗ Branch 3 not taken.
|
21046182 | const auto h = shomateMethod.enthalpy(temperature); // KJ/mol |
172 | 21081474 | return h * 1e3 / molarMass(); // J/kg | |
173 | } | ||
174 | |||
175 | /*! | ||
176 | * \brief Specific enthalpy \f$\mathrm{[J/kg]}\f$ of pure nitrogen gas. | ||
177 | * | ||
178 | * Definition of enthalpy: \f$h= u + pv = u + p / \rho\f$. | ||
179 | * | ||
180 | * Rearranging for internal energy yields: \f$u = h - pv\f$. | ||
181 | * | ||
182 | * Exploiting the Ideal Gas assumption (\f$pv = R_{\textnormal{specific}} T\f$)gives: \f$u = h - R / M T \f$. | ||
183 | * | ||
184 | * The universal gas constant can only be used in the case of molar formulations. | ||
185 | * \param temperature temperature of component in \f$\mathrm{[K]}\f$ | ||
186 | * \param pressure pressure of component in \f$\mathrm{[Pa]}\f$ | ||
187 | */ | ||
188 | static const Scalar gasInternalEnergy(Scalar temperature, | ||
189 | Scalar pressure) | ||
190 | { | ||
191 | return | ||
192 | gasEnthalpy(temperature, pressure) - | ||
193 | 1/molarMass()* // conversion from [J/(mol K)] to [J/(kg K)] | ||
194 | IdealGas::R*temperature; // = pressure * spec. volume for an ideal gas | ||
195 | } | ||
196 | |||
197 | /*! | ||
198 | * \brief Specific isobaric heat capacity \f$\mathrm{[J/(kg*K)]}\f$ of pure nitrogen gas. | ||
199 | * Shomate Equation is used for a temperature range of 100K to 6000K. | ||
200 | */ | ||
201 | ✗ | static const Scalar gasHeatCapacity(Scalar T, | |
202 | Scalar pressure) | ||
203 | { | ||
204 |
1/2✓ Branch 2 taken 101 times.
✗ Branch 3 not taken.
|
118 | const auto cp = shomateMethod.heatCapacity(T); // J/(mol K) |
205 | 118 | return cp / molarMass(); // J/(kg K) | |
206 | } | ||
207 | |||
208 | /*! | ||
209 | * \brief The dynamic viscosity \f$\mathrm{[Pa*s]}\f$ of \f$N_2\f$ at a given pressure and temperature. | ||
210 | * | ||
211 | * \param temperature temperature of component in \f$\mathrm{[K]}\f$ | ||
212 | * \param pressure pressure of component in \f$\mathrm{[Pa]}\f$ | ||
213 | * | ||
214 | * See: | ||
215 | * | ||
216 | * See: R. Reid, et al.: The Properties of Gases and Liquids, | ||
217 | * 4th edition (1987, pp 396-397) \cite reid1987 <BR> | ||
218 | * 5th edition (2001, pp 9.7-9.8 (omega and V_c taken from p. A.19)) \cite poling2001 | ||
219 | * | ||
220 | */ | ||
221 | 16801757 | static Scalar gasViscosity(Scalar temperature, Scalar pressure) | |
222 | { | ||
223 | 16801757 | const Scalar Tc = criticalTemperature(); | |
224 | 16801757 | const Scalar Vc = 90.1; // critical specific volume [cm^3/mol] | |
225 | 16801757 | const Scalar omega = 0.037; // accentric factor | |
226 | 16801757 | const Scalar M = molarMass() * 1e3; // molar mas [g/mol] | |
227 | 16801757 | const Scalar dipole = 0.0; // dipole moment [debye] | |
228 | |||
229 | using std::sqrt; | ||
230 | 16801757 | Scalar mu_r4 = 131.3 * dipole / sqrt(Vc * Tc); | |
231 | 16801757 | mu_r4 *= mu_r4; | |
232 | 16801757 | mu_r4 *= mu_r4; | |
233 | |||
234 | using std::pow; | ||
235 | using std::exp; | ||
236 | 16801757 | Scalar Fc = 1 - 0.2756*omega + 0.059035*mu_r4; | |
237 | 16801757 | Scalar Tstar = 1.2593 * temperature/Tc; | |
238 | 16801757 | Scalar Omega_v = | |
239 | 33603514 | 1.16145*pow(Tstar, -0.14874) + | |
240 | 16801757 | 0.52487*exp(- 0.77320*Tstar) + | |
241 | 16801757 | 2.16178*exp(- 2.43787*Tstar); | |
242 | 16801757 | Scalar mu = 40.785*Fc*sqrt(M*temperature)/(pow(Vc, 2./3)*Omega_v); | |
243 | |||
244 | // conversion from micro poise to Pa s | ||
245 | 16801757 | return mu/1e6 / 10; | |
246 | } | ||
247 | |||
248 | /*! | ||
249 | * \brief Thermal conductivity \f$\mathrm{[[W/(m*K)]}\f$ of nitrogen. | ||
250 | * | ||
251 | * Isobaric Properties for Nitrogen and Oxygen in: NIST Standard | ||
252 | * Reference Database Number 69, Eds. P.J. Linstrom and | ||
253 | * W.G. Mallard evaluated at p=.1 MPa, does not | ||
254 | * change dramatically with p and can be interpolated linearly with temperature | ||
255 | * | ||
256 | * \param temperature absolute temperature in \f$\mathrm{[K]}\f$ | ||
257 | * \param pressure of the phase in \f$\mathrm{[Pa]}\f$ | ||
258 | */ | ||
259 | ✗ | static Scalar gasThermalConductivity(Scalar temperature, Scalar pressure) | |
260 | { | ||
261 | 18031377 | return 6.525e-5 * (temperature - 273.15) + 0.024031; | |
262 | } | ||
263 | }; | ||
264 | |||
265 | /*! | ||
266 | * \brief Shomate parameters for nitrogen published by NIST \cite NIST | ||
267 | * https://webbook.nist.gov/cgi/cbook.cgi?ID=C7727379&Units=SI&Mask=1&Type=JANAFG&Table=on#JANAFG | ||
268 | * First row defines the temperature ranges, further rows give the parameters (A,B,C,D,E,F,G,H) for the respective temperature ranges. | ||
269 | */ | ||
270 | template <class Scalar> | ||
271 | const typename N2<Scalar>::ShomateMethod N2<Scalar>::shomateMethod{ | ||
272 | /*temperature*/{100.0,500.0,2000.0,6000.0}, | ||
273 | typename N2<Scalar>::ShomateMethod::Coefficients{{ | ||
274 | {28.98641, 1.853978, -9.647459, 16.63537, 0.000117, -8.671914, 226.4168, 0.0}, | ||
275 | {19.50583, 19.88705, -8.598535, 1.369784, 0.527601, -4.935202, 212.39, 0.0}, | ||
276 | {35.51872, 1.128728, -0.196103, 0.014662, -4.55376, -18.97091, 224.981, 0.0} | ||
277 | }} | ||
278 | }; | ||
279 | |||
280 | } // end namespace Components | ||
281 | } // end namespace Dumux | ||
282 | |||
283 | #endif | ||
284 |