GCC Code Coverage Report


Directory: ../../../builds/dumux-repositories/
File: /builds/dumux-repositories/dumux/dumux/material/fluidstates/pressureoverlay.hh
Date: 2024-09-21 20:52:54
Exec Total Coverage
Lines: 19 33 57.6%
Functions: 0 14 0.0%
Branches: 24 46 52.2%

Line Branch Exec Source
1 // -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
2 // vi: set et ts=4 sw=4 sts=4:
3 //
4 // SPDX-FileCopyrightInfo: Copyright © DuMux Project contributors, see AUTHORS.md in root folder
5 // SPDX-License-Identifier: GPL-3.0-or-later
6 //
7 /*!
8 * \file
9 * \ingroup FluidStates
10 * \brief This is a fluid state which allows to set the fluid
11 * pressures and takes all other quantities from an other
12 * fluid state.
13 */
14 #ifndef DUMUX_PRESSURE_OVERLAY_FLUID_STATE_HH
15 #define DUMUX_PRESSURE_OVERLAY_FLUID_STATE_HH
16
17 namespace Dumux {
18
19 /*!
20 * \ingroup FluidStates
21 * \brief This is a fluid state which allows to set the fluid
22 * pressures and takes all other quantities from an other
23 * fluid state.
24 */
25 template <class FluidState>
26 class PressureOverlayFluidState
27 {
28 public:
29 static constexpr int numPhases = FluidState::numPhases;
30 static constexpr int numComponents = FluidState::numComponents;
31
32 //! export the scalar type
33 using Scalar = typename FluidState::Scalar;
34
35 /*!
36 * \brief Constructor
37 *
38 * \param fs Fluidstate
39 * The overlay fluid state copies the pressures from the argument,
40 * so it initially behaves exactly like the underlying fluid
41 * state.
42 */
43 1 PressureOverlayFluidState(const FluidState &fs)
44 1 : fs_(&fs)
45 {
46
2/2
✓ Branch 0 taken 2 times.
✓ Branch 1 taken 1 times.
3 for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
47 4 pressure_[phaseIdx] = fs.pressure(phaseIdx);
48 }
49
50 // copy & move constructor / assignment operators
51 PressureOverlayFluidState(const PressureOverlayFluidState &fs) = default;
52 PressureOverlayFluidState(PressureOverlayFluidState &&fs) = default;
53 PressureOverlayFluidState& operator=(const PressureOverlayFluidState &fs) = default;
54 PressureOverlayFluidState& operator=(PressureOverlayFluidState &&fs) = default;
55
56 /*****************************************************
57 * Generic access to fluid properties (No assumptions
58 * on thermodynamic equilibrium required)
59 *****************************************************/
60 /*!
61 * \brief Returns the saturation \f$S_\alpha\f$ of a fluid phase \f$\alpha\f$ in \f$\mathrm{[-]}\f$.
62 *
63 * The saturation is defined as the pore space occupied by the fluid divided by the total pore space:
64 * \f[S_\alpha := \frac{\phi \mathcal{V}_\alpha}{\phi \mathcal{V}}\f]
65 *
66 * \param phaseIdx the index of the phase
67 */
68 Scalar saturation(int phaseIdx) const
69
2/4
✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 1 times.
✗ Branch 5 not taken.
2 { return fs_->saturation(phaseIdx); }
70
71 /*!
72 * \brief Returns the molar fraction \f$x^\kappa_\alpha\f$ of the component \f$\kappa\f$ in fluid phase \f$\alpha\f$ in \f$\mathrm{[-]}\f$.
73 *
74 * The molar fraction \f$x^\kappa_\alpha\f$ is defined as the ratio of the number of molecules
75 * of component \f$\kappa\f$ and the total number of molecules of the phase \f$\alpha\f$.
76 *
77 * \param phaseIdx the index of the phase
78 * \param compIdx the index of the component
79 */
80 Scalar moleFraction(int phaseIdx, int compIdx) const
81 2 { return fs_->moleFraction(phaseIdx, compIdx); }
82
83 /*!
84 * \brief Returns the mass fraction \f$X^\kappa_\alpha\f$ of component \f$\kappa\f$ in fluid phase \f$\alpha\f$ in \f$\mathrm{[-]}\f$.
85 *
86 * The mass fraction \f$X^\kappa_\alpha\f$ is defined as the weight of all molecules of a
87 * component divided by the total mass of the fluid phase. It is related with the component's mole fraction by means of the relation
88 *
89 * \f[X^\kappa_\alpha = x^\kappa_\alpha \frac{M^\kappa}{\overline M_\alpha}\;,\f]
90 *
91 * where \f$M^\kappa\f$ is the molar mass of component \f$\kappa\f$ and
92 * \f$\overline M_\alpha\f$ is the mean molar mass of a molecule of phase
93 * \f$\alpha\f$.
94 *
95 * \param phaseIdx the index of the phase
96 * \param compIdx the index of the component
97 */
98 Scalar massFraction(int phaseIdx, int compIdx) const
99 1 { return fs_->massFraction(phaseIdx, compIdx); }
100
101 /*!
102 * \brief The average molar mass \f$\overline M_\alpha\f$ of phase \f$\alpha\f$ in \f$\mathrm{[kg/mol]}\f$
103 *
104 * The average molar mass is the mean mass of a mole of the
105 * fluid at current composition. It is defined as the sum of the
106 * component's molar masses weighted by the current mole fraction:
107 * \f[\mathrm{ \overline M_\alpha = \sum_\kappa M^\kappa x_\alpha^\kappa}\f]
108 */
109 Scalar averageMolarMass(int phaseIdx) const
110
2/4
✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 1 times.
✗ Branch 5 not taken.
2 { return fs_->averageMolarMass(phaseIdx); }
111
112 /*!
113 * \brief The molar concentration \f$c^\kappa_\alpha\f$ of component \f$\kappa\f$ in fluid phase \f$\alpha\f$ in \f$\mathrm{[mol/m^3]}\f$
114 *
115 * This quantity is usually called "molar concentration" or just
116 * "concentration", but there are many other (though less common)
117 * measures for concentration.
118 *
119 * http://en.wikipedia.org/wiki/Concentration
120 */
121 Scalar molarity(int phaseIdx, int compIdx) const
122
2/4
✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 1 times.
✗ Branch 5 not taken.
2 { return fs_->molarity(phaseIdx, compIdx); }
123
124 /*!
125 * \brief The fugacity \f$f^\kappa_\alpha\f$ of component \f$\kappa\f$
126 * in fluid phase \f$\alpha\f$ in \f$\mathrm{[Pa]}\f$
127 *
128 * The fugacity is defined as:
129 * \f$f_\alpha^\kappa := \Phi^\kappa_\alpha x^\kappa_\alpha p_\alpha \;,\f$
130 * where \f$\Phi^\kappa_\alpha\f$ is the fugacity coefficient \cite reid1987 .
131 * The physical meaning of fugacity becomes clear from the equation:
132 * \f[f_\alpha^\kappa = p_\alpha \exp\left\{\frac{\zeta^\kappa_\alpha}{R T_\alpha} \right\} \;,\f]
133 * where \f$\zeta^\kappa_\alpha\f$ represents the \f$\kappa\f$'s chemical
134 * potential in phase \f$\alpha\f$, \f$R\f$ stands for the ideal gas constant,
135 * and \f$T_\alpha\f$ for the absolute temperature of phase \f$\alpha\f$. Assuming thermal equilibrium,
136 * there is a one-to-one mapping between a component's chemical potential
137 * \f$\zeta^\kappa_\alpha\f$ and its fugacity \f$f^\kappa_\alpha\f$. In this
138 * case chemical equilibrium can thus be expressed by:
139 * \f[f^\kappa := f^\kappa_\alpha = f^\kappa_\beta\quad\forall \alpha, \beta\f]
140 */
141 Scalar fugacity(int phaseIdx, int compIdx) const
142
2/4
✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 1 times.
✗ Branch 5 not taken.
2 { return fs_->fugacity(phaseIdx, compIdx); }
143
144 /*!
145 * \brief The fugacity coefficient \f$\Phi^\kappa_\alpha\f$ of component \f$\kappa\f$ in fluid phase \f$\alpha\f$ in \f$\mathrm{[-]}\f$
146 */
147 Scalar fugacityCoefficient(int phaseIdx, int compIdx) const
148
2/4
✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 1 times.
✗ Branch 5 not taken.
2 { return fs_->fugacityCoefficient(phaseIdx, compIdx); }
149
150 /*!
151 * \brief The molar volume \f$v_{mol,\alpha}\f$ of a fluid phase \f$\alpha\f$ in \f$\mathrm{[m^3/mol]}\f$
152 *
153 * This quantity is the inverse of the molar density.
154 */
155 Scalar molarVolume(int phaseIdx) const
156
2/4
✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 1 times.
✗ Branch 5 not taken.
2 { return fs_->molarVolume(phaseIdx); }
157
158 /*!
159 * \brief The mass density \f$\rho_\alpha\f$ of the fluid phase
160 * \f$\alpha\f$ in \f$\mathrm{[kg/m^3]}\f$
161 */
162 Scalar density(int phaseIdx) const
163
2/4
✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 1 times.
✗ Branch 5 not taken.
2 { return fs_->density(phaseIdx); }
164
165 /*!
166 * \brief The molar density \f$\rho_{mol,\alpha}\f$
167 * of a fluid phase \f$\alpha\f$ in \f$\mathrm{[mol/m^3]}\f$
168 *
169 * The molar density is defined by the mass density \f$\rho_\alpha\f$ and the mean molar mass \f$\overline M_\alpha\f$:
170 *
171 * \f[\rho_{mol,\alpha} = \frac{\rho_\alpha}{\overline M_\alpha} \;.\f]
172 */
173 Scalar molarDensity(int phaseIdx) const
174
2/4
✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 1 times.
✗ Branch 5 not taken.
2 { return fs_->molarDensity(phaseIdx); }
175
176 /*!
177 * \brief The absolute temperature\f$T_\alpha\f$ of a fluid phase \f$\alpha\f$ in \f$\mathrm{[K]}\f$
178 */
179 Scalar temperature(int phaseIdx) const
180 2 { return fs_->temperature(phaseIdx); }
181
182 /*!
183 * \brief The pressure \f$p_\alpha\f$ of a fluid phase \f$\alpha\f$ in \f$\mathrm{[Pa]}\f$
184 */
185 Scalar pressure(int phaseIdx) const
186 1 { return pressure_[phaseIdx]; }
187
188 /*!
189 * \brief The specific enthalpy \f$h_\alpha\f$ of a fluid phase \f$\alpha\f$ in \f$\mathrm{[J/kg]}\f$
190 */
191 Scalar enthalpy(int phaseIdx) const
192
2/4
✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 1 times.
✗ Branch 5 not taken.
2 { return fs_->enthalpy(phaseIdx); }
193
194 /*!
195 * \brief The specific internal energy \f$u_\alpha\f$ of a fluid phase \f$\alpha\f$ in \f$\mathrm{[J/kg]}\f$
196 *
197 * The specific internal energy is defined by the relation:
198 *
199 * \f[u_\alpha = h_\alpha - \frac{p_\alpha}{\rho_\alpha}\f]
200 */
201 Scalar internalEnergy(int phaseIdx) const
202
2/4
✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 1 times.
✗ Branch 5 not taken.
2 { return fs_->internalEnergy(phaseIdx); }
203
204 /*!
205 * \brief The dynamic viscosity \f$\mu_\alpha\f$ of fluid phase \f$\alpha\f$ in \f$\mathrm{[Pa s]}\f$
206 */
207 Scalar viscosity(int phaseIdx) const
208
2/4
✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 1 times.
✗ Branch 5 not taken.
2 { return fs_->viscosity(phaseIdx); }
209
210
211 /*****************************************************
212 * Setter methods. Note that these are not part of the
213 * generic FluidState interface but specific for each
214 * implementation...
215 *****************************************************/
216 /*!
217 * \brief Set the pressure \f$\mathrm{[Pa]}\f$ of a fluid phase
218 */
219 void setPressure(int phaseIdx, Scalar value)
220 { pressure_[phaseIdx] = value; }
221
222 protected:
223 const FluidState *fs_;
224 Scalar pressure_[numPhases] = {};
225 };
226
227 } // end namespace Dumux
228
229 #endif
230