GCC Code Coverage Report


Directory: ../../../builds/dumux-repositories/
File: /builds/dumux-repositories/dumux/test/porousmediumflow/1p/convergence/analyticsolution/problem.hh
Date: 2024-09-21 20:52:54
Exec Total Coverage
Lines: 31 33 93.9%
Functions: 9 12 75.0%
Branches: 21 46 45.7%

Line Branch Exec Source
1 // -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
2 // vi: set et ts=4 sw=4 sts=4:
3 //
4 // SPDX-FileCopyrightInfo: Copyright © DuMux Project contributors, see AUTHORS.md in root folder
5 // SPDX-License-Identifier: GPL-3.0-or-later
6 //
7 /*!
8 * \file
9 * \ingroup OnePTests
10 * \brief The problem setup for the convergence test with analytic solution
11 */
12 #ifndef DUMUX_CONVERGENCE_TEST_ONEP_PROBLEM_HH
13 #define DUMUX_CONVERGENCE_TEST_ONEP_PROBLEM_HH
14
15 #include <cmath>
16 #include <dune/common/fvector.hh>
17
18 #include <dumux/common/properties.hh>
19 #include <dumux/common/boundarytypes.hh>
20 #include <dumux/common/numeqvector.hh>
21 #include <dumux/porousmediumflow/problem.hh>
22
23 namespace Dumux {
24
25 /*!
26 * \ingroup OnePTests
27 * \brief The problem setup for the convergence test with analytic solution
28 */
29 template <class TypeTag>
30 20 class ConvergenceProblem : public PorousMediumFlowProblem<TypeTag>
31 {
32 using ParentType = PorousMediumFlowProblem<TypeTag>;
33 using GridView = typename GetPropType<TypeTag, Properties::GridGeometry>::GridView;
34 using Scalar = GetPropType<TypeTag, Properties::Scalar>;
35 using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
36 using NumEqVector = Dumux::NumEqVector<PrimaryVariables>;
37 using BoundaryTypes = Dumux::BoundaryTypes<GetPropType<TypeTag, Properties::ModelTraits>::numEq()>;
38 using GridGeometry = GetPropType<TypeTag, Properties::GridGeometry>;
39 using Element = typename GridView::template Codim<0>::Entity;
40 using GlobalPosition = typename Element::Geometry::GlobalCoordinate;
41
42 static constexpr auto velocityXIdx = 0;
43 static constexpr auto velocityYIdx = 1;
44 static constexpr auto pressureIdx = 2;
45
46 public:
47 /*!
48 * \brief The constructor.
49 * \param gridGeometry The finite-volume grid geometry
50 */
51 20 ConvergenceProblem(std::shared_ptr<const GridGeometry> gridGeometry)
52 : ParentType(gridGeometry)
53
7/18
✓ Branch 1 taken 20 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 20 times.
✗ Branch 5 not taken.
✓ Branch 8 taken 20 times.
✗ Branch 9 not taken.
✓ Branch 10 taken 20 times.
✗ Branch 11 not taken.
✗ Branch 12 not taken.
✓ Branch 13 taken 20 times.
✓ Branch 15 taken 20 times.
✗ Branch 16 not taken.
✓ Branch 18 taken 20 times.
✗ Branch 19 not taken.
✗ Branch 20 not taken.
✗ Branch 21 not taken.
✗ Branch 22 not taken.
✗ Branch 23 not taken.
60 , c_(getParam<Scalar>("Problem.C"))
54 20 {}
55
56 /*!
57 * \name Problem parameters
58 */
59 // \{
60
61 /*!
62 * \name Boundary conditions
63 */
64 // \{
65
66 /*!
67 * \brief Specifies which kind of boundary condition should be
68 * used for which equation on a given boundary control volume.
69 *
70 * \param globalPos The position of the center of the finite volume
71 */
72 BoundaryTypes boundaryTypesAtPos(const GlobalPosition& globalPos) const
73 {
74
6/12
✓ Branch 0 taken 3144 times.
✓ Branch 1 taken 3240 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
✓ Branch 4 taken 29136 times.
✗ Branch 5 not taken.
✓ Branch 6 taken 33544 times.
✗ Branch 7 not taken.
✓ Branch 8 taken 15120 times.
✗ Branch 9 not taken.
✓ Branch 10 taken 12768 times.
✗ Branch 11 not taken.
96952 BoundaryTypes values;
75
6/12
✓ Branch 0 taken 3144 times.
✓ Branch 1 taken 3240 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
✓ Branch 4 taken 29136 times.
✗ Branch 5 not taken.
✓ Branch 6 taken 33544 times.
✗ Branch 7 not taken.
✓ Branch 8 taken 15120 times.
✗ Branch 9 not taken.
✓ Branch 10 taken 12768 times.
✗ Branch 11 not taken.
96952 values.setAllDirichlet();
76 return values;
77 }
78
79 /*!
80 * \brief Evaluates Dirichlet boundary conditions.
81 * \param globalPos The center of the finite volume which ought to be set.
82 */
83 PrimaryVariables dirichletAtPos(const GlobalPosition& globalPos) const
84 {
85
1/2
✓ Branch 2 taken 29344 times.
✗ Branch 3 not taken.
55048 const auto p = analyticalSolution(globalPos)[pressureIdx];
86
1/2
✓ Branch 1 taken 29344 times.
✗ Branch 2 not taken.
55048 return PrimaryVariables(p);
87 }
88
89 // \}
90
91 /*!
92 * \name Volume terms
93 */
94 // \{
95
96 /*!
97 * \brief Evaluates the source term for all phases within a given
98 * sub-control volume.
99 *
100 * For this method, the \a priVars parameter stores the rate mass
101 * of a component is generated or annihilated per volume
102 * unit. Positive values mean that mass is created, negative ones
103 * mean that it vanishes.
104 *
105 * The units must be according to either using mole or mass fractions (mole/(m^3*s) or kg/(m^3*s)).
106 */
107 971040 NumEqVector sourceAtPos(const GlobalPosition& globalPos) const
108 {
109 1942080 const Scalar x = globalPos[0];
110 1942080 const Scalar y = globalPos[1];
111 using std::exp;
112 using std::sin;
113 using std::cos;
114 971040 const Scalar cosOmegaX = cos(omega_*x);
115 static const Scalar expTwo = exp(2);
116 971040 const Scalar expYPlusOne = exp(y+1);
117
118 1942080 const Scalar result = ( -(c_*cosOmegaX + 1)*exp(y - 1)
119 971040 + 1.5*c_*expYPlusOne*cosOmegaX
120 971040 + omega_*omega_*(expYPlusOne - expTwo + 2))
121 971040 * sin(omega_*x);
122
123 971040 return NumEqVector(result);
124 }
125
126 // \}
127
128 /*!
129 * \brief Evaluates the initial value for a control volume.
130 * \param globalPos The position for which the initial condition should be evaluated
131 */
132 PrimaryVariables initialAtPos(const GlobalPosition& globalPos) const
133 { return PrimaryVariables(0.0); }
134
135 /*!
136 * \brief Returns the analytical solution of the problem at a given position.
137 * \param globalPos The global position
138 */
139 133248 auto analyticalSolution(const GlobalPosition& globalPos) const
140 {
141 133248 Dune::FieldVector<Scalar, 3> sol(0.0);
142 266496 const Scalar x = globalPos[0];
143 266496 const Scalar y = globalPos[1];
144 using std::exp; using std::sin; using std::cos;
145 133248 const Scalar sinOmegaX = sin(omega_*x);
146 133248 const Scalar cosOmegaX = cos(omega_*x);
147 static const Scalar expTwo = exp(2);
148 133248 const Scalar expYPlusOne = exp(y+1);
149
150 266496 sol[pressureIdx] = (expYPlusOne + 2 - expTwo)*sinOmegaX + 10.0;
151 399744 sol[velocityXIdx] = c_/(2*omega_)*expYPlusOne*sinOmegaX*sinOmegaX
152 133248 -omega_*(expYPlusOne + 2 - expTwo)*cosOmegaX;
153 399744 sol[velocityYIdx] = (0.5*c_*(expYPlusOne + 2 - expTwo)*cosOmegaX
154 133248 -(c_*cosOmegaX + 1)*exp(y-1))*sinOmegaX;
155
156 133248 return sol;
157 }
158
159 private:
160 static constexpr Scalar eps_ = 1e-7;
161 static constexpr Scalar omega_ = M_PI;
162 Scalar c_;
163 };
164
165 } // end namespace Dumux
166
167 #endif
168