Line | Branch | Exec | Source |
---|---|---|---|
1 | // -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- | ||
2 | // vi: set et ts=4 sw=4 sts=4: | ||
3 | // | ||
4 | // SPDX-FileCopyrightInfo: Copyright © DuMux Project contributors, see AUTHORS.md in root folder | ||
5 | // SPDX-License-Identifier: GPL-3.0-or-later | ||
6 | // | ||
7 | |||
8 | #ifndef DUMUX_TISSUE_NETWORK_TRANSPORT_PROBLEMS_HH | ||
9 | #define DUMUX_TISSUE_NETWORK_TRANSPORT_PROBLEMS_HH | ||
10 | |||
11 | // # Initial, boundary conditions and sources (`problem.hh`) | ||
12 | // | ||
13 | // This file contains the __problem classes__ which defines the initial and boundary | ||
14 | // conditions and implements the coupling source terms. The file contains two | ||
15 | // problem classes: `TissueTransportProblem` and `NetworkTransportProblem` for the | ||
16 | // respective subdomains. The subdomain problem classes specify boundary and initial | ||
17 | // conditions for the subdomains separately. For this setup, we specify boundary fluxes | ||
18 | // via the `neumann` function (note that despite its name, the function allows you to | ||
19 | // implement both Neumann or Robin-type boundary conditions, weakly imposed). | ||
20 | // | ||
21 | // The subdomain problems are coupled to each other. This is evident from the | ||
22 | // coupling manager pointer that is stored in each subdomain problem (and the | ||
23 | // interface function `couplingManager()` giving access to the coupling manager object). | ||
24 | // This access is used in the `addPointSources()` and `pointSource(...)` functions. | ||
25 | // One point source (in this context) represents a quadrature point for the coupling | ||
26 | // condition integral. This means, we implement | ||
27 | // | ||
28 | // ```math | ||
29 | // \vert P \vert C_M D \bar{\varrho} (x^\bigcirc_\mathrm{T} - x_\mathrm{B}) w_i \mathrm{d}s_i | ||
30 | // ``` | ||
31 | // | ||
32 | // where $`w_i`$ is the weight and $`\mathrm{d}s_i`$ (units of m) the integration element at | ||
33 | // the quadrature point. The units of the resulting term is mol/s (tracer amount per meter and second), | ||
34 | // which are the units of the one-dimensional balance equation integrated over one dimensional control volumes. | ||
35 | // We are integrating conceptually over the surface of the vessel. The quantity | ||
36 | // $`x^\bigcirc_\mathrm{T}`$ is the perimeter average of the 3D mole fraction field. This is not | ||
37 | // directly visible in the code since the chosen coupling manager determined what to return here | ||
38 | // for the 1D and 3D mole fraction depending on the coupling scheme. | ||
39 | // | ||
40 | // [[content]] | ||
41 | // | ||
42 | // ### Include headers | ||
43 | // We use properties (compile-time parameterization) and parameters (run-time parameterization). | ||
44 | // Moreover, we need array types and the problem base class for porous medium problems. | ||
45 | #include <dumux/common/parameters.hh> | ||
46 | #include <dumux/common/properties.hh> | ||
47 | #include <dumux/common/boundarytypes.hh> | ||
48 | #include <dumux/common/numeqvector.hh> | ||
49 | #include <dumux/porousmediumflow/problem.hh> | ||
50 | // | ||
51 | // # The `TissueTransportProblem` class | ||
52 | // We start with the tissue transport with boundary, initial condition and sources. | ||
53 | // To set the initial condition, the problem reads some parameters from the configuration file | ||
54 | // `params.input`. Concentration is defined by $`c = \varrho x`$. This is usually a more | ||
55 | // convenient quantity which is why we read this from the configuration file. | ||
56 | // (What we read from the configuration file is entirely up to us. You can simply swap | ||
57 | // the parameter name in the `getParam` command and adapt the configuration file to provide the parameter.) | ||
58 | // | ||
59 | // [[codeblock]] | ||
60 | namespace Dumux { | ||
61 | template <class TypeTag> | ||
62 | class TissueTransportProblem : public PorousMediumFlowProblem<TypeTag> | ||
63 | { | ||
64 | // [[/codeblock]] | ||
65 | // [[details]] alias definitions and local variables | ||
66 | // [[codeblock]] | ||
67 | using ParentType = PorousMediumFlowProblem<TypeTag>; | ||
68 | using Scalar = GetPropType<TypeTag, Properties::Scalar>; | ||
69 | |||
70 | using GridGeometry = GetPropType<TypeTag, Properties::GridGeometry>; | ||
71 | using GridView = typename GridGeometry::GridView; | ||
72 | using FVElementGeometry = typename GridGeometry::LocalView; | ||
73 | using SubControlVolume = typename GridGeometry::SubControlVolume; | ||
74 | using SubControlVolumeFace = typename GridGeometry::SubControlVolumeFace; | ||
75 | |||
76 | using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>; | ||
77 | using ResidualVector = Dumux::NumEqVector<PrimaryVariables>; | ||
78 | using BoundaryTypes = Dumux::BoundaryTypes<PrimaryVariables::size()>; | ||
79 | using PointSource = GetPropType<TypeTag, Properties::PointSource>; | ||
80 | |||
81 | static constexpr int dim = GridView::dimension; | ||
82 | static constexpr int dimworld = GridView::dimensionworld; | ||
83 | |||
84 | using Element = typename GridView::template Codim<0>::Entity; | ||
85 | using GlobalPosition = typename Element::Geometry::GlobalCoordinate; | ||
86 | |||
87 | using CouplingManager = GetPropType<TypeTag, Properties::CouplingManager>; | ||
88 | |||
89 | static constexpr int phaseIdx = 0; | ||
90 | static constexpr int compIdx = 0; | ||
91 | |||
92 | static constexpr auto lowDimIdx = typename CouplingManager::MultiDomainTraits::template SubDomain<1>::Index(); | ||
93 | // [[/codeblock]] | ||
94 | // [[/details]] | ||
95 | // [[codeblock]] | ||
96 | public: | ||
97 | 1 | TissueTransportProblem(std::shared_ptr<const GridGeometry> gridGeometry, | |
98 | std::shared_ptr<CouplingManager> couplingManager, | ||
99 | const std::string& paramGroup = "") | ||
100 | : ParentType(gridGeometry, paramGroup) | ||
101 |
2/8✓ Branch 2 taken 1 times.
✗ Branch 3 not taken.
✓ Branch 4 taken 1 times.
✗ Branch 5 not taken.
✗ Branch 10 not taken.
✗ Branch 11 not taken.
✗ Branch 13 not taken.
✗ Branch 14 not taken.
|
5 | , couplingManager_(couplingManager) |
102 | { | ||
103 | //read parameters from input file | ||
104 |
4/10✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 1 times.
✗ Branch 5 not taken.
✗ Branch 7 not taken.
✓ Branch 8 taken 1 times.
✗ Branch 9 not taken.
✓ Branch 10 taken 1 times.
✗ Branch 11 not taken.
✗ Branch 12 not taken.
|
1 | name_ = getParam<std::string>("Problem.Name") + "_3d_transport"; |
105 | |||
106 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | freeD_ = getParam<Scalar>("Tracer.DiffusionCoefficient"); |
107 | |||
108 |
1/4✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
✗ Branch 4 not taken.
|
1 | initialPeakConcentration_ = getParam<Scalar>("Tissue.Problem.InitialPeakConcentration", 1.0); // mmol/l |
109 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | initialCenter_ = getParam<GlobalPosition>("Tissue.Problem.InitialCenter"); |
110 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | initialStddev_ = getParam<GlobalPosition>("Tissue.Problem.InitialStddev"); |
111 | 1 | } | |
112 | |||
113 | // name (used for output) | ||
114 | const std::string& name() const | ||
115 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | { return name_; } |
116 | // [[/codeblock]] | ||
117 | // | ||
118 | // We set the initial condition as a Gaussian | ||
119 | // | ||
120 | // ```math | ||
121 | // x(t=0) = \frac{c}{\varrho} \operatorname{exp}\left( -\frac{x-x_0}{2 \sigma_x^2} | ||
122 | // -\frac{y-y_0}{2 \sigma_y^2}-\frac{z-z_0}{2 \sigma_z^2} \right) | ||
123 | //``` | ||
124 | // | ||
125 | // if the Gaussian is very wide, this essentially corresponds to a constant value. | ||
126 | // | ||
127 | // [[codeblock]] | ||
128 | // initial conditions (called when setting initial solution) | ||
129 | 8000 | PrimaryVariables initialAtPos(const GlobalPosition& globalPos) const | |
130 | { | ||
131 | return PrimaryVariables({ | ||
132 | 16000 | initialPeakConcentration_/1000*0.018*std::exp( | |
133 | 56000 | -(globalPos[0] - initialCenter_[0])*(globalPos[0] - initialCenter_[0])/(2*initialStddev_[0]*initialStddev_[0]) | |
134 | 56000 | -(globalPos[1] - initialCenter_[1])*(globalPos[1] - initialCenter_[1])/(2*initialStddev_[1]*initialStddev_[1]) | |
135 | 56000 | -(globalPos[2] - initialCenter_[2])*(globalPos[2] - initialCenter_[2])/(2*initialStddev_[2]*initialStddev_[2]) | |
136 | ) | ||
137 | 16000 | }); | |
138 | } | ||
139 | // [[/codeblock]] | ||
140 | |||
141 | // We set the boundary condition to boundary flux (or Neumann conditions) | ||
142 | // and specify zero flux everywhere for the tissue domain | ||
143 | // | ||
144 | // [[codeblock]] | ||
145 | ✗ | BoundaryTypes boundaryTypesAtPos(const GlobalPosition& globalPos) const | |
146 | { | ||
147 |
2/4✗ Branch 0 not taken.
✓ Branch 1 taken 242400 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 242400 times.
|
484800 | BoundaryTypes values; |
148 |
2/4✗ Branch 0 not taken.
✓ Branch 1 taken 242400 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 242400 times.
|
484800 | values.setAllNeumann(); |
149 | ✗ | return values; | |
150 | } | ||
151 | |||
152 | // flux boundaries (called for Neumann boundaries) | ||
153 | template<class ElementVolumeVariables, class ElementFluxVarsCache> | ||
154 | ✗ | ResidualVector neumann(const Element& element, | |
155 | const FVElementGeometry& fvGeometry, | ||
156 | const ElementVolumeVariables& elemVolVars, | ||
157 | const ElementFluxVarsCache& fluxCache, | ||
158 | const SubControlVolumeFace& scvf) const | ||
159 | { | ||
160 | // no-flow conditions / symmetry conditions | ||
161 | 484800 | ResidualVector values(0.0); | |
162 | ✗ | return values; | |
163 | } | ||
164 | // [[/codeblock]] | ||
165 | |||
166 | // Now follows the implementation of the point sources. The point sources | ||
167 | // are obtained from (and computed by) the coupling manager. The function | ||
168 | // `addPointSources` is called when we call `problem->computePointSourceMap()` | ||
169 | // in the `main.cc`. The mechanism is provided by the base problem we inherit | ||
170 | // from. Essentially all point sources computed by the coupling manager are | ||
171 | // located and assigned to the respective control volume. Finally, the | ||
172 | // function `pointSource` implements the actual value of the point source. | ||
173 | // (While this is linear in the primary variable here, note that you can | ||
174 | // also implement non-linear relations here, provided that a Newton solver | ||
175 | // is used in the main program.) The `source(...)` function allows to | ||
176 | // specify additional volumetric source terms (in units of mol/s/m^3), | ||
177 | // for example, some metabolic demand. | ||
178 | // | ||
179 | // [[codeblock]] | ||
180 | // this is needed for the 1d-3d coupling (realized via point source interface) | ||
181 | void addPointSources(std::vector<PointSource>& pointSources) const | ||
182 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | { pointSources = this->couplingManager().bulkPointSources(); } |
183 | |||
184 | // called for every point source (coupling term integration point) | ||
185 | template<class ElementVolumeVariables> | ||
186 | 322387 | void pointSource(PointSource& source, | |
187 | const Element &element, | ||
188 | const FVElementGeometry& fvGeometry, | ||
189 | const ElementVolumeVariables& elemVolVars, | ||
190 | const SubControlVolume &scv) const | ||
191 | { | ||
192 | // compute source at every integration point | ||
193 | 967161 | const Scalar x1D = this->couplingManager().lowDimPriVars(source.id())[compIdx]; | |
194 | 967161 | const Scalar x3D = this->couplingManager().bulkPriVars(source.id())[compIdx]; | |
195 | |||
196 | // get the segment radius (outer radius) | ||
197 | 967161 | const Scalar radius = this->couplingManager().radius(source.id()); | |
198 | |||
199 | // molar density (mol/m^3) (we assemble a mole balance equation instead of mass balance) | ||
200 | 322387 | const Scalar meanRhoMolar = 1000/0.018; | |
201 | |||
202 | // trans-membrane diffusive permeability | ||
203 | 967161 | const auto lowDimElementIdx = this->couplingManager().pointSourceData(source.id()).lowDimElementIdx(); | |
204 | 644774 | const Scalar lc = freeD_ | |
205 | 1289548 | * this->couplingManager().problem(lowDimIdx).spatialParams().membraneFactor(lowDimElementIdx); // m/s | |
206 | |||
207 | // diffusive flux across membrane | ||
208 | 322387 | auto transMembraneFlux = -2*M_PI*radius*lc*meanRhoMolar*(x3D - x1D); | |
209 | 322387 | transMembraneFlux *= source.quadratureWeight()*source.integrationElement(); | |
210 | |||
211 | 644774 | source = transMembraneFlux; | |
212 | 322387 | } | |
213 | |||
214 | // additional volumetric source term in mol/(s*m^3), i.e. metabolic consumption | ||
215 | // positive value means production into tissue, negative value means extraction from tissue | ||
216 | template<class ElementVolumeVariables> | ||
217 | ✗ | ResidualVector source(const Element &element, | |
218 | const FVElementGeometry& fvGeometry, | ||
219 | const ElementVolumeVariables& elemVolVars, | ||
220 | const SubControlVolume &scv) const | ||
221 | { | ||
222 |
4/12✗ Branch 0 not taken.
✗ Branch 1 not taken.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
✓ Branch 4 taken 808000 times.
✗ Branch 5 not taken.
✓ Branch 6 taken 808000 times.
✗ Branch 7 not taken.
✓ Branch 8 taken 3323 times.
✗ Branch 9 not taken.
✓ Branch 10 taken 3323 times.
✗ Branch 11 not taken.
|
1634138 | return { 0.0 }; |
223 | } | ||
224 | // [[/codeblock]] | ||
225 | |||
226 | // Compute the current contrast agent amount in mole in the whole tissue | ||
227 | // This function is used from the main file to write output. | ||
228 | // | ||
229 | // [[codeblock]] | ||
230 | template<class SolutionVector, class GridVariables> | ||
231 | 101 | Scalar computeTracerAmount(const SolutionVector& sol, const GridVariables& gridVars) | |
232 | { | ||
233 | 101 | Scalar totalAmount(0.0); | |
234 |
2/4✓ Branch 1 taken 101 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 101 times.
✗ Branch 5 not taken.
|
202 | auto fvGeometry = localView(this->gridGeometry()); |
235 |
2/4✓ Branch 1 taken 101 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 101 times.
✗ Branch 5 not taken.
|
202 | auto elemVolVars = localView(gridVars.curGridVolVars()); |
236 |
4/8✓ Branch 1 taken 101 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 101 times.
✗ Branch 5 not taken.
✓ Branch 7 taken 101 times.
✗ Branch 8 not taken.
✓ Branch 9 taken 808101 times.
✗ Branch 10 not taken.
|
1616404 | for (const auto& element : elements(this->gridGeometry().gridView())) |
237 | { | ||
238 | 808000 | fvGeometry.bindElement(element); | |
239 | 808000 | elemVolVars.bindElement(element, fvGeometry, sol); | |
240 | |||
241 |
4/4✓ Branch 2 taken 808000 times.
✓ Branch 3 taken 808000 times.
✓ Branch 4 taken 808000 times.
✓ Branch 5 taken 808000 times.
|
3232000 | for (const auto& scv : scvs(fvGeometry)) |
242 | { | ||
243 | 808000 | const auto& volVars = elemVolVars[scv]; | |
244 | 808000 | const auto localAmount = volVars.porosity() | |
245 | 2424000 | *volVars.moleFraction(phaseIdx, compIdx)*volVars.molarDensity(phaseIdx) | |
246 | 808000 | *scv.volume()*volVars.extrusionFactor(); | |
247 | 808000 | totalAmount += localAmount; | |
248 | } | ||
249 | } | ||
250 | |||
251 | 101 | return totalAmount; | |
252 | } | ||
253 | // [[/codeblock]] | ||
254 | |||
255 | // [[details]] coupling manager interface function and private variables | ||
256 | // [[codeblock]] | ||
257 | // Get the coupling manager | ||
258 | const CouplingManager& couplingManager() const | ||
259 |
6/12✗ Branch 6 not taken.
✓ Branch 7 taken 322387 times.
✗ Branch 8 not taken.
✓ Branch 9 taken 322387 times.
✗ Branch 10 not taken.
✓ Branch 11 taken 322387 times.
✗ Branch 12 not taken.
✓ Branch 13 taken 322387 times.
✓ Branch 15 taken 1 times.
✗ Branch 16 not taken.
✓ Branch 18 taken 1 times.
✗ Branch 19 not taken.
|
1289550 | { return *couplingManager_; } |
260 | |||
261 | private: | ||
262 | static constexpr Scalar eps_ = 1.5e-7; | ||
263 | std::string name_; | ||
264 | |||
265 | Scalar freeD_; | ||
266 | Scalar initialPeakConcentration_; | ||
267 | GlobalPosition initialCenter_, initialStddev_; | ||
268 | |||
269 | std::shared_ptr<CouplingManager> couplingManager_; | ||
270 | }; | ||
271 | // [[/codeblock]] | ||
272 | // [[/details]] | ||
273 | // | ||
274 | // # The `NetworkTransportProblem` class | ||
275 | // We continue with the network transport with boundary, initial condition and sources. | ||
276 | // The implementation is quite similar to the tissue domain. | ||
277 | // This time the boundary function is more complex as we also take into account | ||
278 | // advective transport over the network boundaries to blood flow. | ||
279 | // | ||
280 | // [[codeblock]] | ||
281 | template <class TypeTag> | ||
282 | class NetworkTransportProblem : public PorousMediumFlowProblem<TypeTag> | ||
283 | { | ||
284 | // [[/codeblock]] | ||
285 | // [[details]] alias definitions and local variables | ||
286 | // [[codeblock]] | ||
287 | using ParentType = PorousMediumFlowProblem<TypeTag>; | ||
288 | |||
289 | using Scalar = GetPropType<TypeTag, Properties::Scalar>; | ||
290 | using PointSource = GetPropType<TypeTag, Properties::PointSource>; | ||
291 | using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>; | ||
292 | using ResidualVector = Dumux::NumEqVector<PrimaryVariables>; | ||
293 | using BoundaryTypes = Dumux::BoundaryTypes<PrimaryVariables::size()>; | ||
294 | |||
295 | using GridGeometry = GetPropType<TypeTag, Properties::GridGeometry>; | ||
296 | using GridView = typename GridGeometry::GridView; | ||
297 | using FVElementGeometry = typename GridGeometry::LocalView; | ||
298 | using SubControlVolume = typename GridGeometry::SubControlVolume; | ||
299 | using SubControlVolumeFace = typename GridGeometry::SubControlVolumeFace; | ||
300 | |||
301 | using Element = typename GridView::template Codim<0>::Entity; | ||
302 | using GlobalPosition = typename Element::Geometry::GlobalCoordinate; | ||
303 | |||
304 | using CouplingManager = GetPropType<TypeTag, Properties::CouplingManager>; | ||
305 | |||
306 | static constexpr int dim = GridView::dimension; | ||
307 | static constexpr int dimworld = GridView::dimensionworld; | ||
308 | static constexpr int compIdx = 0; | ||
309 | static constexpr int phaseIdx = 0; | ||
310 | // [[/codeblock]] | ||
311 | // [[/details]] | ||
312 | // [[codeblock]] | ||
313 | public: | ||
314 | // initialize problem instance | ||
315 | template<class GridData> | ||
316 | 1 | NetworkTransportProblem(std::shared_ptr<const GridGeometry> gridGeometry, | |
317 | std::shared_ptr<CouplingManager> couplingManager, | ||
318 | std::shared_ptr<GridData> gridData, | ||
319 | const std::string& paramGroup = "") | ||
320 | : ParentType(gridGeometry, paramGroup) | ||
321 |
2/8✓ Branch 2 taken 1 times.
✗ Branch 3 not taken.
✓ Branch 4 taken 1 times.
✗ Branch 5 not taken.
✗ Branch 8 not taken.
✗ Branch 9 not taken.
✗ Branch 11 not taken.
✗ Branch 12 not taken.
|
3 | , couplingManager_(couplingManager) |
322 | { | ||
323 | //read parameters from input file | ||
324 |
4/10✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 1 times.
✗ Branch 5 not taken.
✗ Branch 7 not taken.
✓ Branch 8 taken 1 times.
✗ Branch 9 not taken.
✓ Branch 10 taken 1 times.
✗ Branch 11 not taken.
✗ Branch 12 not taken.
|
1 | name_ = getParam<std::string>("Problem.Name") + "_1d_transport"; |
325 | |||
326 | // initial conditions | ||
327 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | initialNetworkConcentration_ = getParam<Scalar>("Network.Problem.InitialConcentration", 0.0); // mmol/l |
328 | |||
329 | // cross end-feet transport | ||
330 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | freeD_ = getParam<Scalar>("Tracer.DiffusionCoefficient"); |
331 | |||
332 | // clearance at sides by diffusion | ||
333 | // a boundaryMembraneCoefficient_ of zero means zero gradient / zero diffusive flux | ||
334 | // we can still have advective transport | ||
335 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | farFieldConcentration_ = getParam<Scalar>("Network.Problem.FarFieldConcentration", 0.0); // mmol/l |
336 |
1/4✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
✗ Branch 4 not taken.
|
1 | boundaryMembraneCoefficient_ = getParam<Scalar>("Network.Problem.BoundaryMembraneCoefficient", 0.0); // dimensionless |
337 | |||
338 |
3/6✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 1 times.
✗ Branch 5 not taken.
✓ Branch 7 taken 1 times.
✗ Branch 8 not taken.
|
3 | this->spatialParams().readGridParams(*gridData); |
339 | 1 | } | |
340 | |||
341 | // name (used for output) | ||
342 | const std::string& name() const | ||
343 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | { return name_; } |
344 | // [[/codeblock]] | ||
345 | // initial conditions (called when setting initial solution) | ||
346 | // convert concentration to mole fraction | ||
347 | // [[codeblock]] | ||
348 | ✗ | PrimaryVariables initialAtPos(const GlobalPosition& globalPos) const | |
349 | 3470 | { return { initialNetworkConcentration_/1000*0.018 }; } | |
350 | // [[/codeblock]] | ||
351 | // | ||
352 | // Set the boundary conditions. Note that we generalize the boundary conditions | ||
353 | // for diffusion to allow for a Robin-type boundary condition with a "far-field" | ||
354 | // concentration. This can be used to relax the constraint that there is absolutely | ||
355 | // no diffusive flux over the boundary (`coeff` $`= 0`$). | ||
356 | // | ||
357 | // [[codeblock]] | ||
358 | // type of boundary condition | ||
359 | ✗ | BoundaryTypes boundaryTypes(const Element& element, const SubControlVolumeFace& scvf) const | |
360 | { | ||
361 |
2/4✗ Branch 0 not taken.
✓ Branch 1 taken 12726 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 12726 times.
|
25452 | BoundaryTypes bcTypes; |
362 |
2/4✗ Branch 0 not taken.
✓ Branch 1 taken 12726 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 12726 times.
|
25452 | bcTypes.setAllNeumann(); // Robin / flux boundary conditions |
363 | ✗ | return bcTypes; | |
364 | } | ||
365 | |||
366 | // flux boundaries (called for Neumann boundaries) | ||
367 | template<class ElementVolumeVariables, class ElementFluxVarsCache> | ||
368 | 12726 | ResidualVector neumann(const Element& element, | |
369 | const FVElementGeometry& fvGeometry, | ||
370 | const ElementVolumeVariables& elemVolVars, | ||
371 | const ElementFluxVarsCache& fluxCache, | ||
372 | const SubControlVolumeFace& scvf) const | ||
373 | { | ||
374 | 12726 | ResidualVector values(0.0); | |
375 | |||
376 | // Robin type boundary condition with far field concentration c | ||
377 | // and conductance coefficient (dimensionless) | ||
378 | // -> 1.0 means the concentration c reached in 1 µm distance from the boundary | ||
379 | // -> if this coefficient is low this essentially means no-flow, if high this means direct outflow/inflow | ||
380 | ✗ | const auto robinFlux = [&](const auto& vv, const Scalar c, const Scalar coeff) | |
381 | { | ||
382 |
2/2✓ Branch 0 taken 5858 times.
✓ Branch 1 taken 6868 times.
|
12726 | return - (c/vv.molarDensity() - vv.moleFraction(0, compIdx)) |
383 | 12726 | *vv.molarDensity() | |
384 |
2/2✓ Branch 0 taken 5858 times.
✓ Branch 1 taken 6868 times.
|
12726 | *coeff * vv.effectiveDiffusionCoefficient(phaseIdx, phaseIdx, compIdx); |
385 | }; | ||
386 | |||
387 | 25452 | const auto& volVars = elemVolVars[scvf.insideScvIdx()]; | |
388 | |||
389 | // diffusive part | ||
390 |
2/2✓ Branch 0 taken 5858 times.
✓ Branch 1 taken 6868 times.
|
12726 | values[0] = robinFlux(volVars, farFieldConcentration_, boundaryMembraneCoefficient_); |
391 | |||
392 | // advection | ||
393 |
4/4✓ Branch 0 taken 5858 times.
✓ Branch 1 taken 6868 times.
✓ Branch 2 taken 5858 times.
✓ Branch 3 taken 6868 times.
|
25452 | const auto volumeFlux = this->spatialParams().volumeFlux(scvf.index()); |
394 |
2/2✓ Branch 0 taken 5858 times.
✓ Branch 1 taken 6868 times.
|
12726 | if (volumeFlux > 0) // outflow |
395 | 11716 | values[0] += volumeFlux*volVars.molarDensity()*volVars.moleFraction(0, compIdx)/(volVars.extrusionFactor()*scvf.area()); | |
396 | |||
397 | 12726 | return values; | |
398 | } | ||
399 | // [[/codeblock]] | ||
400 | // | ||
401 | // The point source implementation is symmetric to the implementation of the | ||
402 | // tissue domain. This is important such that the coupling condition is implemented | ||
403 | // in a mass-conservative way. | ||
404 | // | ||
405 | // [[codeblock]] | ||
406 | // this is needed for the 1d-3d coupling (realized via point source interface) | ||
407 | void addPointSources(std::vector<PointSource>& pointSources) const | ||
408 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | { pointSources = this->couplingManager().lowDimPointSources(); } |
409 | |||
410 | // called for every point source (coupling term integration point) | ||
411 | template<class ElementVolumeVariables> | ||
412 | 309825 | void pointSource(PointSource& source, | |
413 | const Element& element, | ||
414 | const FVElementGeometry& fvGeometry, | ||
415 | const ElementVolumeVariables& elemVolVars, | ||
416 | const SubControlVolume& scv) const | ||
417 | { | ||
418 | // compute source at every integration point | ||
419 | 929475 | const Scalar x1D = this->couplingManager().lowDimPriVars(source.id())[compIdx]; | |
420 | 929475 | const Scalar x3D = this->couplingManager().bulkPriVars(source.id())[compIdx]; | |
421 | |||
422 | // get the segment radius (outer PVS radius) | ||
423 | 929475 | const Scalar radius = this->couplingManager().radius(source.id()); | |
424 | |||
425 | // molar density (mol/m^3) (we assemble a mole balance equation instead of mass balance) | ||
426 | 309825 | const Scalar meanRhoMolar = 1000/0.018; | |
427 | |||
428 | // trans-membrane diffusive permeability | ||
429 | 619650 | const Scalar lc = freeD_ | |
430 | 619650 | * this->spatialParams().membraneFactor(scv.elementIndex()); // m/s | |
431 | |||
432 | // diffusive flux across membrane | ||
433 | 309825 | auto transMembraneFlux = 2*M_PI*radius*lc*meanRhoMolar*(x3D - x1D); | |
434 | 309825 | transMembraneFlux *= source.quadratureWeight()*source.integrationElement(); | |
435 | |||
436 | 619650 | source = transMembraneFlux; | |
437 | 309825 | } | |
438 | |||
439 | // additional volumetric source term in mol/(s*m^3), i.e. metabolic consumption | ||
440 | // positive value means production into blood, negative value means extraction from blood | ||
441 | template<class ElementVolumeVariables> | ||
442 | ✗ | ResidualVector source(const Element &element, | |
443 | const FVElementGeometry& fvGeometry, | ||
444 | const ElementVolumeVariables& elemVolVars, | ||
445 | const SubControlVolume &scv) const | ||
446 | { | ||
447 |
2/12✗ Branch 0 not taken.
✗ Branch 1 not taken.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
✓ Branch 4 taken 175235 times.
✗ Branch 5 not taken.
✓ Branch 6 taken 175235 times.
✗ Branch 7 not taken.
✗ Branch 8 not taken.
✗ Branch 9 not taken.
✗ Branch 10 not taken.
✗ Branch 11 not taken.
|
369374 | return { 0.0 }; |
448 | } | ||
449 | // [[/codeblock]] | ||
450 | // [[details]] coupling manager function and internal variables (visibility: private) | ||
451 | // [[codeblock]] | ||
452 | // The coupling manager | ||
453 | const CouplingManager& couplingManager() const | ||
454 |
2/4✓ Branch 7 taken 1 times.
✗ Branch 8 not taken.
✓ Branch 10 taken 1 times.
✗ Branch 11 not taken.
|
1239302 | { return *couplingManager_; } |
455 | |||
456 | private: | ||
457 | std::string name_; | ||
458 | |||
459 | // parameters | ||
460 | Scalar freeD_; | ||
461 | |||
462 | Scalar initialNetworkConcentration_; // mmol/l | ||
463 | Scalar farFieldConcentration_; // mmol/l | ||
464 | Scalar boundaryMembraneCoefficient_; // dimensionless | ||
465 | |||
466 | std::shared_ptr<CouplingManager> couplingManager_; | ||
467 | }; | ||
468 | |||
469 | } //end namespace Dumux | ||
470 | // [[/codeblock]] | ||
471 | // [[/details]] | ||
472 | // [[/content]] | ||
473 | #endif | ||
474 |