GCC Code Coverage Report


Directory: ../../../builds/dumux-repositories/
File: /builds/dumux-repositories/dumux/test/freeflow/navierstokes/angeli/problem.hh
Date: 2024-09-21 20:52:54
Exec Total Coverage
Lines: 58 74 78.4%
Functions: 10 16 62.5%
Branches: 31 92 33.7%

Line Branch Exec Source
1 // -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
2 // vi: set et ts=4 sw=4 sts=4:
3 //
4 // SPDX-FileCopyrightInfo: Copyright © DuMux Project contributors, see AUTHORS.md in root folder
5 // SPDX-License-Identifier: GPL-3.0-or-later
6 //
7 /*!
8 * \file
9 * \ingroup NavierStokesTests
10 * \brief Test for the instationary staggered grid Navier-Stokes model
11 * with analytical solution (Angeli et al. 2017, \cite Angeli2017).
12 */
13
14 #ifndef DUMUX_ANGELI_TEST_PROBLEM_HH
15 #define DUMUX_ANGELI_TEST_PROBLEM_HH
16
17 #include <dune/geometry/quadraturerules.hh>
18
19 #include <dumux/common/parameters.hh>
20 #include <dumux/common/properties.hh>
21
22 #include <dumux/freeflow/navierstokes/boundarytypes.hh>
23
24 namespace Dumux {
25
26 /*!
27 * \ingroup NavierStokesTests
28 * \brief Test problem for the staggered grid (Angeli et al. 2017, \cite Angeli2017).
29 *
30 * The unsteady, 2D, incompressible Navier-Stokes equations for a zero source and a Newtonian
31 * flow is solved and compared to an analytical solution (sums/products of trigonometric functions).
32 * The velocities and pressures decay exponentially. The Dirichlet boundary conditions are
33 * time-dependent and consistent with the analytical solution.
34 */
35 template <class TypeTag, class BaseProblem>
36 4 class AngeliTestProblem : public BaseProblem
37 {
38 using ParentType = BaseProblem;
39
40 using BoundaryTypes = typename ParentType::BoundaryTypes;
41 using GridGeometry = GetPropType<TypeTag, Properties::GridGeometry>;
42 using GridView = typename GridGeometry::GridView;
43 using ModelTraits = GetPropType<TypeTag, Properties::ModelTraits>;
44 using InitialValues = typename ParentType::InitialValues;
45 using Sources = typename ParentType::Sources;
46 using DirichletValues = typename ParentType::DirichletValues;
47 using BoundaryFluxes = typename ParentType::BoundaryFluxes;
48 using Scalar = GetPropType<TypeTag, Properties::Scalar>;
49 using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>;
50 using SubControlVolume = typename GridGeometry::SubControlVolume;
51 using SubControlVolumeFace = typename GridGeometry::SubControlVolumeFace;
52 using FVElementGeometry = typename GridGeometry::LocalView;
53
54 static constexpr auto dimWorld = GridGeometry::GridView::dimensionworld;
55 using Element = typename FVElementGeometry::Element;
56
57 using GlobalPosition = typename Element::Geometry::GlobalCoordinate;
58 using VelocityVector = Dune::FieldVector<Scalar, dimWorld>;
59
60 using CouplingManager = GetPropType<TypeTag, Properties::CouplingManager>;
61
62
63 public:
64 using Indices = typename GetPropType<TypeTag, Properties::ModelTraits>::Indices;
65
66 8 AngeliTestProblem(std::shared_ptr<const GridGeometry> gridGeometry, std::shared_ptr<CouplingManager> couplingManager)
67
7/20
✓ Branch 1 taken 4 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 4 times.
✗ Branch 5 not taken.
✓ Branch 9 taken 4 times.
✗ Branch 10 not taken.
✓ Branch 11 taken 4 times.
✗ Branch 12 not taken.
✓ Branch 13 taken 4 times.
✗ Branch 14 not taken.
✗ Branch 15 not taken.
✓ Branch 16 taken 4 times.
✓ Branch 18 taken 4 times.
✗ Branch 19 not taken.
✗ Branch 20 not taken.
✗ Branch 21 not taken.
✗ Branch 22 not taken.
✗ Branch 23 not taken.
✗ Branch 24 not taken.
✗ Branch 25 not taken.
32 : ParentType(gridGeometry, couplingManager)
68 {
69
1/2
✓ Branch 1 taken 4 times.
✗ Branch 2 not taken.
8 kinematicViscosity_ = getParam<Scalar>("Component.LiquidKinematicViscosity", 1.0);
70
1/2
✓ Branch 1 taken 4 times.
✗ Branch 2 not taken.
8 useNeumann_ = getParam<bool>("Problem.UseNeumann", false);
71
1/2
✓ Branch 1 taken 4 times.
✗ Branch 2 not taken.
8 interpolateExactVelocity_ = getParam<bool>("Problem.InterpolateExactVelocity", false);
72 8 }
73
74 /*!
75 * \name Boundary conditions
76 */
77 // \{
78
79 /*!
80 * \brief Specifies which kind of boundary condition should be
81 * used for which equation on a given boundary control volume.
82 *
83 * \param globalPos The position of the center of the finite volume
84 */
85 55600 BoundaryTypes boundaryTypesAtPos(const GlobalPosition &globalPos) const
86 {
87
2/4
✗ Branch 0 not taken.
✓ Branch 1 taken 54000 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 13600 times.
123200 BoundaryTypes values;
88
89 if constexpr (ParentType::isMomentumProblem())
90 {
91 static constexpr Scalar eps = 1e-8;
92
1/12
✗ Branch 0 not taken.
✓ Branch 1 taken 27800 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
✗ Branch 4 not taken.
✗ Branch 5 not taken.
✗ Branch 6 not taken.
✗ Branch 7 not taken.
✗ Branch 8 not taken.
✗ Branch 9 not taken.
✗ Branch 10 not taken.
✗ Branch 11 not taken.
55600 if (useNeumann_ && (globalPos[0] > this->gridGeometry().bBoxMax()[0] - eps ||
93 globalPos[1] > this->gridGeometry().bBoxMax()[1] - eps))
94 values.setAllNeumann();
95 else
96 values.setAllDirichlet();
97 }
98 else
99
2/4
✗ Branch 0 not taken.
✓ Branch 1 taken 54000 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 13600 times.
67600 values.setAllNeumann();
100
101 55600 return values;
102
103 }
104
105 //! Enable internal Dirichlet constraints
106 static constexpr bool enableInternalDirichletConstraints()
107 { return !ParentType::isMomentumProblem(); }
108
109
110 /*!
111 * \brief Tag a degree of freedom to carry internal Dirichlet constraints.
112 * If true is returned for a dof, the equation for this dof is replaced
113 * by the constraint that its primary variable values must match the
114 * user-defined values obtained from the function internalDirichlet(),
115 * which must be defined in the problem.
116 *
117 * \param element The finite element
118 * \param scv The sub-control volume
119 */
120 602100 std::bitset<DirichletValues::dimension> hasInternalDirichletConstraint(const Element& element, const SubControlVolume& scv) const
121 {
122 602100 std::bitset<DirichletValues::dimension> values;
123
124 // We don't need internal Dirichlet conditions if a Neumann BC is set for the momentum balance (which accounts for the pressure).
125 // If only Dirichlet BCs are set for the momentum balance, fix the pressure at some cells such that the solution is fully defined.
126
1/2
✓ Branch 0 taken 602100 times.
✗ Branch 1 not taken.
602100 if (!useNeumann_)
127 {
128 1806300 const auto fvGeometry = localView(this->gridGeometry()).bindElement(element);
129
4/4
✓ Branch 0 taken 42228 times.
✓ Branch 1 taken 559872 times.
✓ Branch 2 taken 42228 times.
✓ Branch 3 taken 559872 times.
1204200 if (fvGeometry.hasBoundaryScvf())
130 42228 values.set(Indices::pressureIdx);
131 }
132
133 602100 return values;
134 }
135
136 /*!
137 * \brief Define the values of internal Dirichlet constraints for a degree of freedom.
138 * \param element The finite element
139 * \param scv The sub-control volume
140 */
141 DirichletValues internalDirichlet(const Element& element, const SubControlVolume& scv) const
142 135000 { return analyticalSolution(scv.center(), time_); }
143
144
145
146 /*!
147 * \brief Evaluate the boundary conditions for a dirichlet
148 * control volume face (velocities)
149 *
150 * \param element The finite element
151 * \param scvf the sub control volume face
152 *
153 * Concerning the usage of averagedVelocity_, see the explanation of the initial function.
154 */
155 245680 DirichletValues dirichlet(const Element& element, const SubControlVolumeFace& scvf) const
156 {
157
2/2
✓ Branch 0 taken 9440 times.
✓ Branch 1 taken 113400 times.
245680 if (ParentType::isMomentumProblem() && interpolateExactVelocity_)
158 {
159 56640 const auto fvGeometry = localView(this->gridGeometry()).bindElement(element);
160 18880 return velocityDirichlet_(fvGeometry.geometry(scvf));
161 }
162 else
163 453600 return analyticalSolution(scvf.center(), time_);
164 }
165
166 /*!
167 * \brief Evaluates the boundary conditions for a Neumann control volume.
168 *
169 * \param element The element for which the Neumann boundary condition is set
170 * \param fvGeometry The fvGeometry
171 * \param elemVolVars The element volume variables
172 * \param elemFaceVars The element face variables
173 * \param scvf The boundary sub control volume face
174 */
175 template<class ElementVolumeVariables, class ElementFluxVariablesCache>
176 108000 BoundaryFluxes neumann(const Element& element,
177 const FVElementGeometry& fvGeometry,
178 const ElementVolumeVariables& elemVolVars,
179 const ElementFluxVariablesCache& elemFluxVarsCache,
180 const SubControlVolumeFace& scvf) const
181 {
182 108000 BoundaryFluxes values(0.0);
183
184 if constexpr (!ParentType::isMomentumProblem())
185 {
186 216000 const auto insideDensity = elemVolVars[scvf.insideScvIdx()].density();
187 324000 values[Indices::conti0EqIdx] = this->faceVelocity(element, fvGeometry, scvf) * insideDensity * scvf.unitOuterNormal();
188 }
189 else
190 {
191 using std::sin;
192 using std::cos;
193 Dune::FieldMatrix<Scalar, 2, 2> momentumFlux(0.0);
194 const auto x = scvf.ipGlobal()[0];
195 const auto y = scvf.ipGlobal()[1];
196 const Scalar mu = kinematicViscosity_;
197 const Scalar t = time_;
198 momentumFlux[0][0] = M_PI*M_PI *(-4.0*mu*exp(10.0*M_PI*M_PI*mu*t)*sin(M_PI*x)*sin(2*M_PI*y) + (4.0*sin(2*M_PI*y)*sin(2*M_PI*y)*cos(M_PI*x)*cos(M_PI*x) - 1.0*cos(2*M_PI*x) - 0.25*cos(4*M_PI*y))*exp(5.0*M_PI*M_PI*mu*t))*exp(-15.0*M_PI*M_PI*mu*t);
199 momentumFlux[0][1] = M_PI*M_PI *( 3.0*mu*exp(10.0*M_PI*M_PI*mu*t) - 2.0*exp(5.0*M_PI*M_PI*mu*t)*sin(M_PI*x)*sin(2*M_PI*y))*exp(-15.0*M_PI*M_PI*mu*t)*cos(M_PI*x)*cos(2*M_PI*y);
200 momentumFlux[1][0] = momentumFlux[0][1];
201 momentumFlux[1][1] = M_PI*M_PI *( 4.0*mu*exp(10.0*M_PI*M_PI*mu*t)*sin(M_PI*x)*sin(2*M_PI*y) + (sin(M_PI*x)*sin(M_PI*x)*cos(2*M_PI*y)*cos(2*M_PI*y) - 1.0*cos(2*M_PI*x) - 0.25*cos(4*M_PI*y))*exp(5.0*M_PI*M_PI*mu*t))*exp(-15.0*M_PI*M_PI*mu*t);
202
203 const auto normal = scvf.unitOuterNormal();
204 momentumFlux.mv(normal, values);
205 }
206
207 108000 return values;
208 }
209
210
211
212 /*!
213 * \brief Returns the analytical solution of the problem at a given time and position.
214 * \param globalPos The global position
215 * \param time The current simulation time
216 */
217 1310160 DirichletValues analyticalSolution(const GlobalPosition& globalPos, Scalar time) const
218 {
219 2620320 const Scalar x = globalPos[0];
220 2620320 const Scalar y = globalPos[1];
221
222 1310160 DirichletValues values;
223 using std::exp;
224 using std::sin;
225 using std::cos;
226
227 if constexpr (ParentType::isMomentumProblem())
228 {
229 2070320 values[Indices::velocityXIdx] = - 2.0 * M_PI * exp(- 5.0 * kinematicViscosity_ * M_PI * M_PI * time) * cos(M_PI * x) * sin(2.0 * M_PI * y);
230 2070320 values[Indices::velocityYIdx] = M_PI * exp(- 5.0 * kinematicViscosity_ * M_PI * M_PI * time) * sin(M_PI * x) * cos(2.0 * M_PI * y);
231 }
232 else
233 275000 values[Indices::pressureIdx] = - 0.25 * exp(-10.0 * kinematicViscosity_ * M_PI * M_PI * time) * M_PI * M_PI * (4.0 * cos(2.0 * M_PI * x) + cos(4.0 * M_PI * y));
234
235 1310160 return values;
236 }
237
238 // \}
239
240 /*!
241 * \name Volume terms
242 */
243 // \{
244
245 /*!
246 * \brief Evaluates the initial value for a control volume (velocity)
247 */
248 10200 InitialValues initial(const SubControlVolume& scv) const
249 {
250 // We can either evaluate the analytical solution point-wise at the
251 // momentum balance integration points or use an averaged velocity.
252
253 // Not using the quadrature to integrate and average the velocity
254 // will yield a spurious pressure solution in the first time step
255 // because the discrete mass balance equation is not fulfilled when just taking
256 // point-wise values of the analytical solution.
257
258
2/2
✓ Branch 0 taken 5100 times.
✓ Branch 1 taken 5100 times.
10200 if (!interpolateExactVelocity_)
259 10200 return analyticalSolution(scv.dofPosition(), 0.0);
260
261 // Get the element intersection/facet corresponding corresponding to the dual grid scv
262 // (where the velocity DOFs are located) and use a quadrature to get the average velocity
263 // on that facet.
264 10200 const auto& element = this->gridGeometry().element(scv.elementIndex());
265
266
1/2
✗ Branch 3 not taken.
✓ Branch 4 taken 15200 times.
25400 for (const auto& intersection : intersections(this->gridGeometry().gridView(), element))
267 {
268
4/4
✓ Branch 0 taken 5100 times.
✓ Branch 1 taken 10100 times.
✓ Branch 2 taken 5100 times.
✓ Branch 3 taken 10100 times.
30400 if (intersection.indexInInside() == scv.indexInElement())
269 5100 return velocityDirichlet_(intersection.geometry());
270
271 }
272 DUNE_THROW(Dune::InvalidStateException, "No intersection found");
273 }
274
275
276 /*!
277 * \brief Evaluates the initial value for an element (pressure)
278 */
279 5000 InitialValues initial(const Element& element) const
280 {
281 10000 return analyticalSolution(element.geometry().center(), 0.0);
282 }
283
284 // \}
285
286 /*!
287 * \brief Updates the time information
288 */
289 void updateTime(Scalar t)
290 {
291
2/4
✓ Branch 1 taken 10 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 10 times.
✗ Branch 5 not taken.
20 time_ = t;
292 }
293
294 private:
295 template<class Geometry>
296 14540 DirichletValues velocityDirichlet_(const Geometry& geo) const
297 {
298 14540 DirichletValues priVars(0.0);
299 19640 const auto& quad = Dune::QuadratureRules<Scalar, Geometry::mydimension>::rule(geo.type(), 3);
300 101780 for (auto&& qp : quad)
301 {
302 58160 const auto w = qp.weight()*geo.integrationElement(qp.position());
303 47960 const auto globalPos = geo.global(qp.position());
304 29080 const auto sol = analyticalSolution(globalPos, time_);
305 87240 priVars += sol*w;
306 }
307 14540 priVars /= geo.volume();
308 14540 return priVars;
309 }
310
311 Scalar kinematicViscosity_;
312 Scalar time_ = 0.0;
313 bool useNeumann_;
314 bool interpolateExactVelocity_;
315 };
316 } // end namespace Dumux
317
318 #endif
319