Line | Branch | Exec | Source |
---|---|---|---|
1 | // -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- | ||
2 | // vi: set et ts=4 sw=4 sts=4: | ||
3 | // | ||
4 | // SPDX-FileCopyrightInfo: Copyright © DuMux Project contributors, see AUTHORS.md in root folder | ||
5 | // SPDX-License-Identifier: GPL-3.0-or-later | ||
6 | // | ||
7 | |||
8 | #ifndef DUMUX_POISEUILLE_FLOW_VERTICAL_TEST_PROBLEM_HH | ||
9 | #define DUMUX_POISEUILLE_FLOW_VERTICAL_TEST_PROBLEM_HH | ||
10 | |||
11 | #include <algorithm> | ||
12 | #include <cctype> | ||
13 | |||
14 | #include <dumux/common/properties.hh> | ||
15 | #include <dumux/common/parameters.hh> | ||
16 | #include <dumux/common/numeqvector.hh> | ||
17 | |||
18 | #include <dumux/freeflow/shallowwater/problem.hh> | ||
19 | #include <dumux/freeflow/shallowwater/boundaryfluxes.hh> | ||
20 | |||
21 | namespace Dumux { | ||
22 | |||
23 | /*! | ||
24 | * \ingroup ShallowWaterTests | ||
25 | * \brief A simple test for the 2D flow in a channel with viscous bottom friction (plane Poiseuille flow). | ||
26 | * In comparison to the other Poiseuille flow test, here we assume a rectangular channel with zero friction walls | ||
27 | * but viscous friction due to bottom shear stress. | ||
28 | * The result is a parabolic velocity profile \f$ U(z) \f$ over the height: | ||
29 | * \f[ | ||
30 | * U(z) = 3u(z/h - 0.5(z/h)^2) | ||
31 | * \f] | ||
32 | * bottom shear stress | ||
33 | * \f[ | ||
34 | * \tau = -\mu 3u/h | ||
35 | * \f] | ||
36 | * and mean velocity | ||
37 | * \f[ | ||
38 | * u = \frac{1}{3} \frac{h^2 \rho g S}{\mu} | ||
39 | * \f] | ||
40 | * where \f$ S \f$ denotes the bed slope in m/m. | ||
41 | * Therefore, in difference to the other test, the heigh-averaged velocity is constant over the channel width | ||
42 | * and to model the bottom surface, we need to include the effect of the bottom shear stress. | ||
43 | * This problem uses the \ref ShallowWaterModel | ||
44 | */ | ||
45 | template<class TypeTag> | ||
46 | class PoiseuilleFlowProblem | ||
47 | : public ShallowWaterProblem<TypeTag> | ||
48 | { | ||
49 | using ParentType = ShallowWaterProblem<TypeTag>; | ||
50 | using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>; | ||
51 | using BoundaryTypes = Dumux::BoundaryTypes<GetPropType<TypeTag, Properties::ModelTraits>::numEq()>; | ||
52 | using Scalar = GetPropType<TypeTag, Properties::Scalar>; | ||
53 | using Indices = typename GetPropType<TypeTag, Properties::ModelTraits>::Indices; | ||
54 | using GridGeometry = GetPropType<TypeTag, Properties::GridGeometry>; | ||
55 | using ElementVolumeVariables = typename GetPropType<TypeTag, Properties::GridVolumeVariables>::LocalView; | ||
56 | using GridVariables = GetPropType<TypeTag, Properties::GridVariables>; | ||
57 | using ElementFluxVariablesCache = typename GridVariables::GridFluxVariablesCache::LocalView; | ||
58 | using VolumeVariables = typename ElementVolumeVariables::VolumeVariables; | ||
59 | using FVElementGeometry = typename GetPropType<TypeTag, Properties::GridGeometry>::LocalView; | ||
60 | using SubControlVolumeFace = typename FVElementGeometry::SubControlVolumeFace; | ||
61 | using GridView = typename GetPropType<TypeTag, Properties::GridGeometry>::GridView; | ||
62 | using Element = typename GridView::template Codim<0>::Entity; | ||
63 | using GlobalPosition = typename Element::Geometry::GlobalCoordinate; | ||
64 | using NumEqVector = Dumux::NumEqVector<PrimaryVariables>; | ||
65 | using NeumannFluxes = NumEqVector; | ||
66 | using SubControlVolume = typename FVElementGeometry::SubControlVolume; | ||
67 | using FluidSystem = typename VolumeVariables::FluidSystem; | ||
68 | |||
69 | public: | ||
70 | 1 | PoiseuilleFlowProblem(std::shared_ptr<const GridGeometry> gridGeometry) | |
71 |
10/30✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 1 times.
✗ Branch 5 not taken.
✓ Branch 8 taken 1 times.
✗ Branch 9 not taken.
✓ Branch 10 taken 1 times.
✗ Branch 11 not taken.
✗ Branch 12 not taken.
✓ Branch 13 taken 1 times.
✓ Branch 15 taken 1 times.
✗ Branch 16 not taken.
✓ Branch 18 taken 1 times.
✗ Branch 19 not taken.
✓ Branch 21 taken 1 times.
✗ Branch 22 not taken.
✓ Branch 24 taken 1 times.
✗ Branch 25 not taken.
✓ Branch 27 taken 1 times.
✗ Branch 28 not taken.
✗ Branch 29 not taken.
✗ Branch 30 not taken.
✗ Branch 31 not taken.
✗ Branch 32 not taken.
✗ Branch 35 not taken.
✗ Branch 36 not taken.
✗ Branch 37 not taken.
✗ Branch 38 not taken.
✗ Branch 39 not taken.
✗ Branch 40 not taken.
|
3 | : ParentType(gridGeometry) |
72 | { | ||
73 | // assume box grid with flow in x-direction driven by gravity | ||
74 |
6/12✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 1 times.
✗ Branch 5 not taken.
✓ Branch 7 taken 1 times.
✗ Branch 8 not taken.
✓ Branch 10 taken 1 times.
✗ Branch 11 not taken.
✓ Branch 13 taken 1 times.
✗ Branch 14 not taken.
✓ Branch 16 taken 1 times.
✗ Branch 17 not taken.
|
6 | channelWidth_ = this->gridGeometry().bBoxMax()[1] - this->gridGeometry().bBoxMin()[1]; |
75 |
2/4✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✗ Branch 4 not taken.
✓ Branch 5 taken 1 times.
|
1 | name_ = getParam<std::string>("Problem.Name"); |
76 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | bedSlope_ = getParam<Scalar>("Problem.BedSlope"); |
77 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | waterDepthBoundary_ = getParam<Scalar>("Problem.WaterDepth"); |
78 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | dynamicViscosity_ = FluidSystem::viscosity(293.15, 1e5); |
79 | |||
80 |
3/6✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 1 times.
✗ Branch 5 not taken.
✓ Branch 7 taken 1 times.
✗ Branch 8 not taken.
|
2 | exactWaterDepth_.resize(gridGeometry->numDofs(), 0.0); |
81 |
3/6✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 1 times.
✗ Branch 5 not taken.
✓ Branch 7 taken 1 times.
✗ Branch 8 not taken.
|
2 | exactVelocityX_.resize(gridGeometry->numDofs(), 0.0); |
82 |
3/8✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 1 times.
✗ Branch 5 not taken.
✓ Branch 7 taken 1 times.
✗ Branch 8 not taken.
✗ Branch 9 not taken.
✗ Branch 10 not taken.
|
2 | exactVelocityY_.resize(gridGeometry->numDofs(), 0.0); |
83 | 1 | } | |
84 | |||
85 | const std::string& name() const | ||
86 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | { return name_; } |
87 | |||
88 | /*! | ||
89 | * \brief Specifies which kind of boundary condition should be | ||
90 | * used for which equation on a given boundary segment. | ||
91 | * | ||
92 | * \param globalPos The position for which the boundary type is set | ||
93 | */ | ||
94 | ✗ | BoundaryTypes boundaryTypesAtPos(const GlobalPosition &globalPos) const | |
95 | { | ||
96 | 440 | BoundaryTypes bcTypes; | |
97 |
2/4✗ Branch 0 not taken.
✓ Branch 1 taken 88 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 352 times.
|
440 | bcTypes.setAllNeumann(); |
98 | ✗ | return bcTypes; | |
99 | } | ||
100 | |||
101 | /*! | ||
102 | * \brief Specifies the neumann boundary | ||
103 | * | ||
104 | * We need the Riemann invariants to compute the values depending of the boundary type. | ||
105 | * Since we use a weak imposition we do not have a dirichlet value. We impose fluxes | ||
106 | * based on q, h, etc. computed with the Riemann invariants | ||
107 | */ | ||
108 | 352 | NeumannFluxes neumann(const Element& element, | |
109 | const FVElementGeometry& fvGeometry, | ||
110 | const ElementVolumeVariables& elemVolVars, | ||
111 | const ElementFluxVariablesCache& elemFluxVarsCache, | ||
112 | const SubControlVolumeFace& scvf) const | ||
113 | { | ||
114 | 352 | NeumannFluxes values(0.0); | |
115 | |||
116 | 352 | const auto& globalPos = scvf.ipGlobal(); | |
117 | 704 | const auto& insideScv = fvGeometry.scv(scvf.insideScvIdx()); | |
118 | 352 | const auto& insideVolVars = elemVolVars[insideScv]; | |
119 |
2/2✓ Branch 0 taken 192 times.
✓ Branch 1 taken 160 times.
|
352 | const auto& unitNormal = scvf.unitOuterNormal(); |
120 |
2/2✓ Branch 0 taken 192 times.
✓ Branch 1 taken 160 times.
|
352 | const auto gravity = this->spatialParams().gravity(globalPos); |
121 | std::array<Scalar, 3> boundaryStateVariables; | ||
122 | |||
123 |
8/8✓ Branch 0 taken 192 times.
✓ Branch 1 taken 160 times.
✓ Branch 2 taken 192 times.
✓ Branch 3 taken 160 times.
✓ Branch 4 taken 192 times.
✓ Branch 5 taken 160 times.
✓ Branch 6 taken 192 times.
✓ Branch 7 taken 160 times.
|
1408 | if (globalPos[1] > this->gridGeometry().bBoxMax()[1] - eps_ |
124 |
12/12✓ Branch 0 taken 192 times.
✓ Branch 1 taken 160 times.
✓ Branch 2 taken 160 times.
✓ Branch 3 taken 32 times.
✓ Branch 4 taken 160 times.
✓ Branch 5 taken 32 times.
✓ Branch 6 taken 160 times.
✓ Branch 7 taken 32 times.
✓ Branch 8 taken 160 times.
✓ Branch 9 taken 32 times.
✓ Branch 10 taken 160 times.
✓ Branch 11 taken 32 times.
|
352 | || globalPos[1] < this->gridGeometry().bBoxMin()[1] + eps_) |
125 | { | ||
126 | // full slip for tangential part and reflection (no-flow) for normal part | ||
127 | 1280 | const Scalar insideVelocityNormalWall = insideVolVars.velocity(0)*unitNormal[0] + insideVolVars.velocity(1)*unitNormal[1]; | |
128 | 1280 | const Scalar insideVelocityTangentWall = -insideVolVars.velocity(0)*unitNormal[1] + insideVolVars.velocity(1)*unitNormal[0]; | |
129 | 320 | const Scalar outsideVelocityNormalWall = -insideVelocityNormalWall; | |
130 | 320 | const Scalar outsideVelocityTangentWall = insideVelocityTangentWall; | |
131 | 640 | const Scalar outsideVelocityXWall = outsideVelocityNormalWall*unitNormal[0] - outsideVelocityTangentWall*unitNormal[1]; | |
132 | 640 | const Scalar outsideVelocityYWall = outsideVelocityNormalWall*unitNormal[1] + outsideVelocityTangentWall*unitNormal[0]; | |
133 | 640 | boundaryStateVariables = { insideVolVars.waterDepth(), outsideVelocityXWall, outsideVelocityYWall }; | |
134 | } | ||
135 | else | ||
136 | { | ||
137 | // for inlet and outlet, the same water depth is prescribed | ||
138 | 96 | boundaryStateVariables = ShallowWater::fixedWaterDepthBoundary( | |
139 | 32 | waterDepthBoundary_, | |
140 | insideVolVars.waterDepth(), insideVolVars.velocity(0), insideVolVars.velocity(1), | ||
141 | gravity, unitNormal | ||
142 | ); | ||
143 | } | ||
144 | |||
145 | 352 | auto riemannFlux = ShallowWater::riemannProblem( | |
146 | 704 | insideVolVars.waterDepth(), boundaryStateVariables[0], | |
147 | 704 | insideVolVars.velocity(0), boundaryStateVariables[1], | |
148 | 704 | insideVolVars.velocity(1), boundaryStateVariables[2], | |
149 | insideVolVars.bedSurface(), insideVolVars.bedSurface(), | ||
150 | gravity, unitNormal | ||
151 | ); | ||
152 | |||
153 | 1056 | values[Indices::massBalanceIdx] = riemannFlux[0]; | |
154 | 1056 | values[Indices::velocityXIdx] = riemannFlux[1]; | |
155 | 1056 | values[Indices::velocityYIdx] = riemannFlux[2]; | |
156 | |||
157 | // zero viscous part of the flux since we assume full slip on the walls | ||
158 | |||
159 | 352 | return values; | |
160 | } | ||
161 | |||
162 | // bottom friction source | ||
163 | 320 | NumEqVector source(const Element &element, | |
164 | const FVElementGeometry& fvGeometry, | ||
165 | const ElementVolumeVariables& elemVolVars, | ||
166 | const SubControlVolume& scv) const | ||
167 | { | ||
168 | 320 | NumEqVector bottomFrictionSource(0.0); | |
169 | |||
170 | 320 | const auto& volVars = elemVolVars[scv]; | |
171 | 320 | Dune::FieldVector<Scalar, 2> bottomShearStress = | |
172 | 960 | this->spatialParams().frictionLaw(element, scv).bottomShearStress(volVars); | |
173 | |||
174 | 640 | bottomFrictionSource[0] = 0.0; | |
175 | 1280 | bottomFrictionSource[1] = -bottomShearStress[0] / volVars.density(); | |
176 | 1280 | bottomFrictionSource[2] = -bottomShearStress[1] / volVars.density(); | |
177 | |||
178 | 320 | return bottomFrictionSource; | |
179 | } | ||
180 | |||
181 | // Set initial sol to the exact solution | ||
182 | ✗ | PrimaryVariables initialAtPos(const GlobalPosition& globalPos) const | |
183 | { | ||
184 | 80 | return exactSol_(globalPos); | |
185 | }; | ||
186 | |||
187 | //! Update the analytical solution | ||
188 | 1 | void updateAnalyticalSolution() | |
189 | { | ||
190 |
1/2✓ Branch 3 taken 41 times.
✗ Branch 4 not taken.
|
83 | for (const auto& element : elements(this->gridGeometry().gridView())) |
191 | { | ||
192 | 120 | const auto eIdx = this->gridGeometry().elementMapper().index(element); | |
193 | 40 | const auto& globalPos = element.geometry().center(); | |
194 | 80 | const auto sol = exactSol_(globalPos); | |
195 | 120 | exactWaterDepth_[eIdx] = sol[Indices::waterdepthIdx]; | |
196 | 120 | exactVelocityX_[eIdx] = sol[Indices::velocityXIdx]; | |
197 | 120 | exactVelocityY_[eIdx] = sol[Indices::velocityYIdx]; | |
198 | } | ||
199 | 1 | } | |
200 | |||
201 | //! Get the analytical water depth | ||
202 | const std::vector<Scalar>& getExactWaterDepth() const | ||
203 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | { return exactWaterDepth_; } |
204 | |||
205 | //! Get the analytical U-velocity | ||
206 | const std::vector<Scalar>& getExactVelocityX() const | ||
207 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | { return exactVelocityX_; } |
208 | |||
209 | //! Get the analytical V-velocity | ||
210 | const std::vector<Scalar>& getExactVelocityY() const | ||
211 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | { return exactVelocityY_; } |
212 | |||
213 | private: | ||
214 | ✗ | PrimaryVariables exactSol_(const GlobalPosition& globalPos) const | |
215 | { | ||
216 | 80 | PrimaryVariables values(0.0); | |
217 | 160 | const auto gravity = this->spatialParams().gravity(globalPos); | |
218 | 80 | const auto hSquared = waterDepthBoundary_*waterDepthBoundary_; | |
219 | 80 | const auto pressureGradient = 1000.0*gravity*bedSlope_; | |
220 | 160 | values[0] = waterDepthBoundary_; | |
221 | 160 | values[1] = pressureGradient*hSquared/(3.0*dynamicViscosity_); | |
222 | 160 | values[2] = 0.0; | |
223 | ✗ | return values; | |
224 | } | ||
225 | |||
226 | std::vector<Scalar> exactWaterDepth_; | ||
227 | std::vector<Scalar> exactVelocityX_; | ||
228 | std::vector<Scalar> exactVelocityY_; | ||
229 | |||
230 | Scalar channelWidth_; | ||
231 | Scalar waterDepthBoundary_; // water level | ||
232 | Scalar bedSlope_; // bed slope (positive downwards) | ||
233 | Scalar dynamicViscosity_; | ||
234 | |||
235 | static constexpr Scalar eps_ = 1.0e-6; | ||
236 | std::string name_; | ||
237 | }; | ||
238 | |||
239 | } //end namespace Dumux | ||
240 | |||
241 | #endif | ||
242 |