Line | Branch | Exec | Source |
---|---|---|---|
1 | // -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- | ||
2 | // vi: set et ts=4 sw=4 sts=4: | ||
3 | // | ||
4 | // SPDX-FileCopyrightInfo: Copyright © DuMux Project contributors, see AUTHORS.md in root folder | ||
5 | // SPDX-License-Identifier: GPL-3.0-or-later | ||
6 | // | ||
7 | /*! | ||
8 | * \file | ||
9 | * \ingroup ShallowWaterTests | ||
10 | * \brief A test for the Shallow water model (bowl). | ||
11 | */ | ||
12 | #ifndef DUMUX_BOWL_TEST_PROBLEM_HH | ||
13 | #define DUMUX_BOWL_TEST_PROBLEM_HH | ||
14 | |||
15 | #include <dumux/common/boundarytypes.hh> | ||
16 | #include <dumux/common/properties.hh> | ||
17 | #include <dumux/common/parameters.hh> | ||
18 | #include <dumux/common/numeqvector.hh> | ||
19 | |||
20 | #include <dumux/freeflow/shallowwater/problem.hh> | ||
21 | #include <dumux/freeflow/shallowwater/boundaryfluxes.hh> | ||
22 | |||
23 | namespace Dumux { | ||
24 | |||
25 | /*! | ||
26 | * \ingroup ShallowWaterTests | ||
27 | * \brief A wetting and drying test with sloshing water in a bowl. | ||
28 | * | ||
29 | * There is no flow over the boundaries and no friction is considered. | ||
30 | * | ||
31 | * This example is demanding for the implicit model if a high mesh resolution is applied | ||
32 | * (e.g. 150x150 cells) in combination with a large time step size. Using the new limiting | ||
33 | * (UpwindFluxLimiting = true) will help to improve the convergence for such cases. | ||
34 | * | ||
35 | * This test uses a low mesh resolution and only ensures that UpwindFluxLimiting for the mobility | ||
36 | * works. For low mesh resolution the solution is very diffusive so that the oscillation is dampened. | ||
37 | * This gets better with grid refinement (not tested here). | ||
38 | * | ||
39 | * The results are checked against a analytical solution which is based on the "Thacker-Solution" | ||
40 | * (William Thacker, "Some exact solutions to the nonlinear shallow-water wave equations", Journal | ||
41 | * of Fluid Mechanics, 107:499–508, 1981, doi: https://doi.org/10.1017/S0022112081001882). | ||
42 | * This implements the oscillating solution in a circular bowl (Section 4 in the paper). | ||
43 | * Further examples and details on the solution are given | ||
44 | * in SWASHES (Shallow Water Analytic Solutions for Hydraulic and Environmental Studies, | ||
45 | * https://www.idpoisson.fr/swashes/). | ||
46 | * | ||
47 | * This problem uses the \ref ShallowWaterModel. | ||
48 | */ | ||
49 | template <class TypeTag> | ||
50 | class BowlProblem : public ShallowWaterProblem<TypeTag> | ||
51 | { | ||
52 | using ParentType = ShallowWaterProblem<TypeTag>; | ||
53 | |||
54 | using GridGeometry = GetPropType<TypeTag, Properties::GridGeometry>; | ||
55 | using FVElementGeometry = typename GetPropType<TypeTag, Properties::GridGeometry>::LocalView; | ||
56 | using SubControlVolume = typename FVElementGeometry::SubControlVolume; | ||
57 | using SubControlVolumeFace = typename FVElementGeometry::SubControlVolumeFace; | ||
58 | using GridView = typename GetPropType<TypeTag, Properties::GridGeometry>::GridView; | ||
59 | using Element = typename GridView::template Codim<0>::Entity; | ||
60 | using GlobalPosition = typename Element::Geometry::GlobalCoordinate; | ||
61 | |||
62 | using Scalar = GetPropType<TypeTag, Properties::Scalar>; | ||
63 | using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>; | ||
64 | using NumEqVector = Dumux::NumEqVector<PrimaryVariables>; | ||
65 | |||
66 | using NeumannFluxes = NumEqVector; | ||
67 | using ElementVolumeVariables = typename GetPropType<TypeTag, Properties::GridVolumeVariables>::LocalView; | ||
68 | using Indices = typename GetPropType<TypeTag, Properties::ModelTraits>::Indices; | ||
69 | using BoundaryTypes = Dumux::BoundaryTypes<GetPropType<TypeTag, Properties::ModelTraits>::numEq()>; | ||
70 | |||
71 | |||
72 | public: | ||
73 | 3 | BowlProblem(std::shared_ptr<const GridGeometry> gridGeometry) | |
74 |
7/20✓ Branch 1 taken 3 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 3 times.
✗ Branch 5 not taken.
✓ Branch 8 taken 3 times.
✗ Branch 9 not taken.
✓ Branch 10 taken 3 times.
✗ Branch 11 not taken.
✗ Branch 12 not taken.
✓ Branch 13 taken 3 times.
✓ Branch 15 taken 3 times.
✗ Branch 16 not taken.
✓ Branch 18 taken 3 times.
✗ Branch 19 not taken.
✗ Branch 20 not taken.
✗ Branch 21 not taken.
✗ Branch 22 not taken.
✗ Branch 23 not taken.
✗ Branch 26 not taken.
✗ Branch 27 not taken.
|
9 | : ParentType(gridGeometry) |
75 | { | ||
76 | |||
77 |
2/4✓ Branch 1 taken 3 times.
✗ Branch 2 not taken.
✗ Branch 4 not taken.
✓ Branch 5 taken 3 times.
|
3 | name_ = getParam<std::string>("Problem.Name"); |
78 |
1/2✓ Branch 1 taken 3 times.
✗ Branch 2 not taken.
|
3 | bowlDepthAtCenter_ = getParam<Scalar>("Problem.BowlDepthAtCenter"); |
79 |
1/2✓ Branch 1 taken 3 times.
✗ Branch 2 not taken.
|
3 | bowlParaboloidRadius_ = getParam<Scalar>("Problem.BowlParaboloidRadius"); |
80 | |||
81 | // Thacker (1981) Eq. (43) | ||
82 | using std::sqrt; | ||
83 |
1/2✓ Branch 1 taken 3 times.
✗ Branch 2 not taken.
|
3 | bowlAnalyticParameterOmega_ = sqrt(8.0 * getParam<Scalar>("Problem.Gravity") * bowlDepthAtCenter_) / bowlParaboloidRadius_; |
84 | 3 | std::cout << "One full oscillation period of the water table is: " | |
85 |
1/2✓ Branch 2 taken 3 times.
✗ Branch 3 not taken.
|
6 | << oscillationPeriodInSeconds() << " seconds." << std::endl; |
86 | |||
87 | // Thacker (1981) Eq. (50) | ||
88 |
1/2✓ Branch 1 taken 3 times.
✗ Branch 2 not taken.
|
3 | const auto D0PlusEta = bowlDepthAtCenter_ + getParam<Scalar>("Problem.BowlInitialWaterElevationAtCenter"); |
89 | 3 | const auto D0PlusEtaSquared = D0PlusEta*D0PlusEta; | |
90 | 3 | const auto D0Squared = bowlDepthAtCenter_*bowlDepthAtCenter_; | |
91 | 3 | bowlAnalyticParameterA_ = (D0PlusEtaSquared - D0Squared)/(D0PlusEtaSquared + D0Squared); | |
92 | |||
93 | // check constraint Thacker (1981) text after Eq. (49) | ||
94 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 3 times.
|
3 | if (bowlAnalyticParameterA_ >= 1.0) |
95 | ✗ | DUNE_THROW(Dune::InvalidStateException, "Parameter A has to be smaller than unity!"); | |
96 | 3 | } | |
97 | |||
98 | //! One oscillation period of the water table (analytically this goes on forever) | ||
99 | ✗ | Scalar oscillationPeriodInSeconds() const | |
100 |
2/4✓ Branch 1 taken 3 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 3 times.
✗ Branch 5 not taken.
|
6 | { return 2*M_PI/bowlAnalyticParameterOmega_; } |
101 | |||
102 | //! Get the analytical water depth at time t and position pos | ||
103 | 439520 | PrimaryVariables analyticalSolution(const Scalar t, const GlobalPosition& pos) const | |
104 | { | ||
105 | using std::sqrt; | ||
106 | using std::cos; | ||
107 | using std::sin; | ||
108 | |||
109 | // see Thacker (1981) Eq. (51) for formula | ||
110 |
8/8✓ Branch 0 taken 213440 times.
✓ Branch 1 taken 226080 times.
✓ Branch 2 taken 213440 times.
✓ Branch 3 taken 226080 times.
✓ Branch 4 taken 213440 times.
✓ Branch 5 taken 226080 times.
✓ Branch 6 taken 213440 times.
✓ Branch 7 taken 226080 times.
|
1758080 | const auto radiusSquared = pos[0]*pos[0] + pos[1]*pos[1]; |
111 | 439520 | const auto LSquared = bowlParaboloidRadius_*bowlParaboloidRadius_; | |
112 | 439520 | const auto A = bowlAnalyticParameterA_; | |
113 | 439520 | const auto omega = bowlAnalyticParameterOmega_; | |
114 | 439520 | const auto D0 = bowlDepthAtCenter_; | |
115 | |||
116 | 439520 | const auto oneMinusASq = 1.0 - A*A; | |
117 | 439520 | const auto oneMinusACosOmegaT = 1.0 - A*cos(omega*t); | |
118 | 439520 | const auto ratioSq = oneMinusASq / (oneMinusACosOmegaT*oneMinusACosOmegaT); | |
119 | 439520 | const auto localRadiusSq = radiusSquared / LSquared; | |
120 | // bowl depth function (cf. D in Thacker (1981)) | ||
121 | 439520 | const auto D = D0*(1.0 - localRadiusSq); | |
122 | // height above equilibrium water level (cf. h in Thacker (1981)) | ||
123 | 439520 | const auto h = D0*(sqrt(ratioSq) - 1.0 - localRadiusSq*(ratioSq - 1.0)); | |
124 | // see remark about total water depth in Thacker (1981) beginning section 2 | ||
125 | 439520 | const auto analyticalWaterDepth = h + D; | |
126 | |||
127 | 439520 | const auto halfOmegaASinOmegaT = 0.5*omega*A*sin(omega*t); | |
128 |
2/2✓ Branch 0 taken 213440 times.
✓ Branch 1 taken 226080 times.
|
439520 | const auto analyticalVelocityX = pos[0]*halfOmegaASinOmegaT/oneMinusACosOmegaT; |
129 |
2/2✓ Branch 0 taken 213440 times.
✓ Branch 1 taken 226080 times.
|
439520 | const auto analyticalVelocityY = pos[1]*halfOmegaASinOmegaT/oneMinusACosOmegaT; |
130 | |||
131 | // The radius of the shoreline (where h + D = 0), Eq. (48) | ||
132 | 439520 | const auto h0 = D0*(sqrt(ratioSq) - 1.0); // h in the middle of the bowl (r=0) | |
133 | 439520 | const auto shoreLineRadiusSquared = LSquared*(D0/(D0 + h0)); | |
134 | |||
135 | // outside shoreline the water height and velocity is zero | ||
136 |
2/2✓ Branch 0 taken 213440 times.
✓ Branch 1 taken 226080 times.
|
439520 | if (radiusSquared > shoreLineRadiusSquared) |
137 | 213440 | return { 0.0, 0.0, 0.0 }; | |
138 | else | ||
139 | 226080 | return { analyticalWaterDepth, analyticalVelocityX, analyticalVelocityY }; | |
140 | } | ||
141 | |||
142 | /*! | ||
143 | * \name Problem parameters | ||
144 | */ | ||
145 | // \{ | ||
146 | |||
147 | /*! | ||
148 | * \brief The problem name | ||
149 | * This is used as a prefix for files generated by the simulation. | ||
150 | */ | ||
151 | const std::string& name() const | ||
152 |
1/2✓ Branch 1 taken 3 times.
✗ Branch 2 not taken.
|
3 | { return name_; } |
153 | |||
154 | // \} | ||
155 | |||
156 | /*! | ||
157 | * \name Boundary conditions | ||
158 | */ | ||
159 | // \{ | ||
160 | |||
161 | /*! | ||
162 | * \brief Specifies which kind of boundary condition should be | ||
163 | * used for which equation on a given boundary segment. | ||
164 | */ | ||
165 | ✗ | BoundaryTypes boundaryTypesAtPos(const GlobalPosition &globalPos) const | |
166 | { | ||
167 | 868320 | BoundaryTypes bcTypes; | |
168 |
2/4✗ Branch 0 not taken.
✓ Branch 1 taken 173664 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 694656 times.
|
868320 | bcTypes.setAllNeumann(); |
169 | ✗ | return bcTypes; | |
170 | } | ||
171 | |||
172 | /*! | ||
173 | * \brief Specifies the neumann boundary | ||
174 | * | ||
175 | * We need the Riemann invariants to compute the values depending of the boundary type. | ||
176 | * Since we use a weak imposition we do not have a dirichlet value. We impose fluxes | ||
177 | * based on q, h, etc. computed with the Riemann invariants | ||
178 | */ | ||
179 | template<class ElementFluxVariablesCache> | ||
180 | 694656 | NeumannFluxes neumann(const Element& element, | |
181 | const FVElementGeometry& fvGeometry, | ||
182 | const ElementVolumeVariables& elemVolVars, | ||
183 | const ElementFluxVariablesCache& elemFluxVarsCache, | ||
184 | const SubControlVolumeFace& scvf) const | ||
185 | { | ||
186 | 694656 | NeumannFluxes values(0.0); | |
187 | |||
188 | 1389312 | const auto& insideScv = fvGeometry.scv(scvf.insideScvIdx()); | |
189 | 694656 | const auto& insideVolVars = elemVolVars[insideScv]; | |
190 | 694656 | const auto& nxy = scvf.unitOuterNormal(); | |
191 | 1389312 | const auto gravity = this->spatialParams().gravity(scvf.center()); | |
192 | std::array<Scalar, 3> boundaryStateVariables; | ||
193 | |||
194 | //no flow with zero normal velocity and tangential velocity | ||
195 | 2778624 | const auto vNormalGhost = -(nxy[0] * insideVolVars.velocity(0) + nxy[1] * insideVolVars.velocity(1)); | |
196 | 2778624 | const auto vTangentialGhost = -nxy[1] * insideVolVars.velocity(0) + nxy[0] * insideVolVars.velocity(1); | |
197 | |||
198 | 1389312 | boundaryStateVariables[0] = insideVolVars.waterDepth(); | |
199 | 2083968 | boundaryStateVariables[1] = nxy[0] * vNormalGhost - nxy[1] * vTangentialGhost; | |
200 | 2083968 | boundaryStateVariables[2] = nxy[1] * vNormalGhost + nxy[0] * vTangentialGhost; | |
201 | |||
202 | const auto riemannFlux = | ||
203 | 2083968 | ShallowWater::riemannProblem(insideVolVars.waterDepth(), boundaryStateVariables[0], | |
204 | 1389312 | insideVolVars.velocity(0), boundaryStateVariables[1], | |
205 | 1389312 | insideVolVars.velocity(1), boundaryStateVariables[2], | |
206 | insideVolVars.bedSurface(), insideVolVars.bedSurface(), | ||
207 | gravity, nxy); | ||
208 | |||
209 | 2083968 | values[Indices::massBalanceIdx] = riemannFlux[0]; | |
210 | 2083968 | values[Indices::velocityXIdx] = riemannFlux[1]; | |
211 | 2083968 | values[Indices::velocityYIdx] = riemannFlux[2]; | |
212 | |||
213 | 694656 | return values; | |
214 | } | ||
215 | |||
216 | // \} | ||
217 | |||
218 | /*! | ||
219 | * \name Volume terms | ||
220 | */ | ||
221 | // \{ | ||
222 | |||
223 | /*! | ||
224 | * \brief Evaluate the initial values at position globalPos | ||
225 | */ | ||
226 | 3280 | PrimaryVariables initialAtPos(const GlobalPosition& globalPos) const | |
227 | { | ||
228 | using std::max; // regularize so that we are virtually dry but not completely dry | ||
229 |
4/4✓ Branch 1 taken 1844 times.
✓ Branch 2 taken 1436 times.
✓ Branch 3 taken 1844 times.
✓ Branch 4 taken 1436 times.
|
5124 | return { max(analyticalSolution(0, globalPos)[0], 1e-5), 0.0, 0.0 }; |
230 | }; | ||
231 | |||
232 | // \} | ||
233 | |||
234 | private: | ||
235 | Scalar bowlDepthAtCenter_; | ||
236 | Scalar bowlParaboloidRadius_; | ||
237 | Scalar bowlAnalyticParameterOmega_; | ||
238 | Scalar bowlAnalyticParameterA_; | ||
239 | static constexpr Scalar eps_ = 1.0e-6; | ||
240 | std::string name_; | ||
241 | }; | ||
242 | |||
243 | } //end namespace Dumux | ||
244 | |||
245 | #endif | ||
246 |