Line | Branch | Exec | Source |
---|---|---|---|
1 | // -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- | ||
2 | // vi: set et ts=4 sw=4 sts=4: | ||
3 | // | ||
4 | // SPDX-FileCopyrightInfo: Copyright © DuMux Project contributors, see AUTHORS.md in root folder | ||
5 | // SPDX-License-Identifier: GPL-3.0-or-later | ||
6 | // | ||
7 | /*! | ||
8 | * \file | ||
9 | * \ingroup OnePNCMinTests | ||
10 | * \brief Definition of a problem for thermochemical heat storage using \f$ \textnormal{CaO}, | ||
11 | * \textnormal{Ca} \left( \textnormal{OH} \right)_2\f$. | ||
12 | */ | ||
13 | #ifndef DUMUX_THERMOCHEM_PROBLEM_HH | ||
14 | #define DUMUX_THERMOCHEM_PROBLEM_HH | ||
15 | |||
16 | #include <dumux/common/properties.hh> | ||
17 | #include <dumux/common/parameters.hh> | ||
18 | #include <dumux/common/boundarytypes.hh> | ||
19 | #include <dumux/common/numeqvector.hh> | ||
20 | |||
21 | #include <dumux/discretization/elementsolution.hh> | ||
22 | #include <dumux/porousmediumflow/problem.hh> | ||
23 | |||
24 | #include "reaction.hh" | ||
25 | |||
26 | namespace Dumux { | ||
27 | |||
28 | /*! | ||
29 | * \ingroup OnePNCMinTests | ||
30 | * | ||
31 | * \brief Test for the 1pncmin model in combination with the NI model for a quasi batch | ||
32 | * reaction of Calciumoxyde to Calciumhydroxide. | ||
33 | * | ||
34 | * The boundary conditions of the batch test are such, that there are no gradients | ||
35 | * for temperature, pressure and gas water concentration within the reactor. | ||
36 | * The test only runs for the box discretization. | ||
37 | */ | ||
38 | template <class TypeTag> | ||
39 | class ThermoChemProblem : public PorousMediumFlowProblem<TypeTag> | ||
40 | { | ||
41 | using ParentType = PorousMediumFlowProblem<TypeTag>; | ||
42 | using GridView = typename GetPropType<TypeTag, Properties::GridGeometry>::GridView; | ||
43 | using Scalar = GetPropType<TypeTag, Properties::Scalar>; | ||
44 | using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>; | ||
45 | using SolidSystem = GetPropType<TypeTag, Properties::SolidSystem>; | ||
46 | |||
47 | using GridVariables = GetPropType<TypeTag, Properties::GridVariables>; | ||
48 | using ElementVolumeVariables = typename GridVariables::GridVolumeVariables::LocalView; | ||
49 | using ElementFluxVariablesCache = typename GridVariables::GridFluxVariablesCache::LocalView; | ||
50 | using VolumeVariables = typename GridVariables::GridVolumeVariables::VolumeVariables; | ||
51 | |||
52 | using Indices = typename GetPropType<TypeTag, Properties::ModelTraits>::Indices; | ||
53 | using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>; | ||
54 | using BoundaryTypes = Dumux::BoundaryTypes<GetPropType<TypeTag, Properties::ModelTraits>::numEq()>; | ||
55 | using Element = typename GridView::template Codim<0>::Entity; | ||
56 | using FVElementGeometry = typename GetPropType<TypeTag, Properties::GridGeometry>::LocalView; | ||
57 | using SubControlVolume = typename FVElementGeometry::SubControlVolume; | ||
58 | using SubControlVolumeFace = typename FVElementGeometry::SubControlVolumeFace; | ||
59 | using GridGeometry = GetPropType<TypeTag, Properties::GridGeometry>; | ||
60 | using NumEqVector = Dumux::NumEqVector<PrimaryVariables>; | ||
61 | using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>; | ||
62 | using ReactionRate = ThermoChemReaction; | ||
63 | |||
64 | enum { dim = GridView::dimension }; | ||
65 | enum { dimWorld = GridView::dimensionworld }; | ||
66 | |||
67 | enum | ||
68 | { | ||
69 | // Indices of the primary variables | ||
70 | pressureIdx = Indices::pressureIdx, //gas-phase pressure | ||
71 | H2OIdx = FluidSystem::compIdx(FluidSystem::MultiPhaseFluidSystem::H2OIdx), // mole fraction water | ||
72 | |||
73 | CaOIdx = FluidSystem::numComponents, | ||
74 | CaO2H2Idx = FluidSystem::numComponents+1, | ||
75 | |||
76 | // Equation Indices | ||
77 | conti0EqIdx = Indices::conti0EqIdx, | ||
78 | |||
79 | // Phase Indices | ||
80 | cPhaseIdx = SolidSystem::comp0Idx, | ||
81 | |||
82 | temperatureIdx = Indices::temperatureIdx, | ||
83 | energyEqIdx = Indices::energyEqIdx | ||
84 | }; | ||
85 | |||
86 | using GlobalPosition = typename SubControlVolumeFace::GlobalPosition; | ||
87 | |||
88 | public: | ||
89 | 1 | ThermoChemProblem(std::shared_ptr<const GridGeometry> gridGeometry) | |
90 |
10/32✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 1 times.
✗ Branch 5 not taken.
✓ Branch 8 taken 1 times.
✗ Branch 9 not taken.
✓ Branch 10 taken 1 times.
✗ Branch 11 not taken.
✗ Branch 12 not taken.
✓ Branch 13 taken 1 times.
✓ Branch 15 taken 1 times.
✗ Branch 16 not taken.
✓ Branch 18 taken 1 times.
✗ Branch 19 not taken.
✓ Branch 21 taken 1 times.
✗ Branch 22 not taken.
✓ Branch 24 taken 1 times.
✗ Branch 25 not taken.
✓ Branch 27 taken 1 times.
✗ Branch 28 not taken.
✗ Branch 29 not taken.
✗ Branch 30 not taken.
✗ Branch 31 not taken.
✗ Branch 32 not taken.
✗ Branch 35 not taken.
✗ Branch 36 not taken.
✗ Branch 37 not taken.
✗ Branch 38 not taken.
✗ Branch 39 not taken.
✗ Branch 40 not taken.
✗ Branch 41 not taken.
✗ Branch 42 not taken.
|
3 | : ParentType(gridGeometry) |
91 | { | ||
92 |
2/4✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✗ Branch 4 not taken.
✓ Branch 5 taken 1 times.
|
1 | name_ = getParam<std::string>("Problem.Name"); |
93 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | FluidSystem::init(/*tempMin=*/473.15, |
94 | /*tempMax=*/623.0, | ||
95 | /*numTemptempSteps=*/25, | ||
96 | /*startPressure=*/0, | ||
97 | /*endPressure=*/9e6, | ||
98 | /*pressureSteps=*/200); | ||
99 | |||
100 | // obtain BCs | ||
101 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | boundaryPressure_ = getParam<Scalar>("Problem.BoundaryPressure"); |
102 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | boundaryVaporMoleFrac_ = getParam<Scalar>("Problem.BoundaryMoleFraction"); |
103 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | boundaryTemperature_ = getParam<Scalar>("Problem.BoundaryTemperature"); |
104 | |||
105 | 1 | unsigned int codim = GetPropType<TypeTag, Properties::GridGeometry>::discMethod == DiscretizationMethods::box ? dim : 0; | |
106 |
4/8✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 1 times.
✗ Branch 5 not taken.
✓ Branch 7 taken 1 times.
✗ Branch 8 not taken.
✓ Branch 10 taken 1 times.
✗ Branch 11 not taken.
|
3 | permeability_.resize(gridGeometry->gridView().size(codim)); |
107 |
4/8✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 1 times.
✗ Branch 5 not taken.
✓ Branch 7 taken 1 times.
✗ Branch 8 not taken.
✓ Branch 10 taken 1 times.
✗ Branch 11 not taken.
|
3 | porosity_.resize(gridGeometry->gridView().size(codim)); |
108 |
4/8✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 1 times.
✗ Branch 5 not taken.
✓ Branch 7 taken 1 times.
✗ Branch 8 not taken.
✓ Branch 10 taken 1 times.
✗ Branch 11 not taken.
|
3 | reactionRate_.resize(gridGeometry->gridView().size(codim)); |
109 | 1 | } | |
110 | |||
111 | /*! | ||
112 | * \brief The problem name. | ||
113 | * | ||
114 | * This is used as a prefix for files generated by the simulation. | ||
115 | */ | ||
116 | const std::string name() const | ||
117 |
2/6✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 1 times.
✗ Branch 5 not taken.
✗ Branch 6 not taken.
✗ Branch 7 not taken.
|
1 | { return name_; } |
118 | |||
119 | /*! | ||
120 | * \brief Sets the currently used time step size. | ||
121 | * | ||
122 | * This is necessary to limit the source terms to the maximum possible rate. | ||
123 | */ | ||
124 | ✗ | void setTimeStepSize( Scalar timeStepSize ) | |
125 | { | ||
126 |
1/2✓ Branch 1 taken 151 times.
✗ Branch 2 not taken.
|
151 | timeStepSize_ = timeStepSize; |
127 | ✗ | } | |
128 | |||
129 | /*! | ||
130 | * \name Boundary conditions | ||
131 | * | ||
132 | * \brief Specifies which kind of boundary condition should be | ||
133 | * used for which equation on a given boundary segment | ||
134 | * | ||
135 | * \param globalPos The global position | ||
136 | */ | ||
137 | ✗ | BoundaryTypes boundaryTypesAtPos( const GlobalPosition &globalPos) const | |
138 | { | ||
139 | ✗ | BoundaryTypes values; | |
140 | |||
141 | // we don't set any BCs for the solid phases | ||
142 | ✗ | values.setDirichlet(pressureIdx); | |
143 | ✗ | values.setDirichlet(H2OIdx); | |
144 | ✗ | values.setDirichlet(temperatureIdx); | |
145 | |||
146 | ✗ | return values; | |
147 | } | ||
148 | |||
149 | /*! | ||
150 | * \brief Evaluates the boundary conditions for a Dirichlet boundary segment | ||
151 | * | ||
152 | * \param globalPos The global position | ||
153 | */ | ||
154 | ✗ | PrimaryVariables dirichletAtPos(const GlobalPosition &globalPos) const | |
155 | { | ||
156 | 3200 | PrimaryVariables priVars(0.0); | |
157 | |||
158 | 3200 | priVars[pressureIdx] = boundaryPressure_; | |
159 | 3200 | priVars[H2OIdx] = boundaryVaporMoleFrac_; | |
160 | 3200 | priVars[temperatureIdx] = boundaryTemperature_; | |
161 | 3200 | priVars[CaO2H2Idx] = 0.0; | |
162 | 6400 | priVars[CaOIdx] = 0.2; | |
163 | |||
164 | ✗ | return priVars; | |
165 | } | ||
166 | |||
167 | /*! | ||
168 | * \brief Evaluates the boundary conditions for a Neumann | ||
169 | * boundary segment in dependency on the current solution. | ||
170 | * | ||
171 | * \param element The element | ||
172 | * \param fvGeometry The finite volume geometry | ||
173 | * \param elemVolVars The element volume variables | ||
174 | * \param elemFluxVarsCache Flux variables caches for all faces in stencil | ||
175 | * \param scvf The subcontrolvolume face | ||
176 | * | ||
177 | * \f$ [ \textnormal{unit of conserved quantity} / (m^(dim-1) \cdot s )] \f$ | ||
178 | * Negative values indicate an inflow. | ||
179 | */ | ||
180 | |||
181 | ✗ | NumEqVector neumann(const Element& element, | |
182 | const FVElementGeometry& fvGeometry, | ||
183 | const ElementVolumeVariables& elemVolVars, | ||
184 | const ElementFluxVariablesCache& elemFluxVarsCache, | ||
185 | const SubControlVolumeFace& scvf) const | ||
186 | { | ||
187 | ✗ | NumEqVector flux(0.0); | |
188 | ✗ | return flux; | |
189 | } | ||
190 | |||
191 | /*! | ||
192 | * \brief Evaluates the initial values for a control volume in | ||
193 | * \f$ [ \textnormal{unit of primary variables} ] \f$ | ||
194 | * | ||
195 | * \param globalPos The global position | ||
196 | */ | ||
197 | ✗ | PrimaryVariables initialAtPos(const GlobalPosition& globalPos) const | |
198 | { | ||
199 | ✗ | PrimaryVariables priVars(0.0); | |
200 | |||
201 | Scalar pInit; | ||
202 | Scalar tInit; | ||
203 | Scalar h2oInit; | ||
204 | Scalar CaOInit; | ||
205 | Scalar CaO2H2Init; | ||
206 | |||
207 | ✗ | pInit = getParam<Scalar>("Problem.PressureInitial"); | |
208 | ✗ | tInit = getParam<Scalar>("Problem.TemperatureInitial"); | |
209 | ✗ | h2oInit = getParam<Scalar>("Problem.VaporInitial"); | |
210 | ✗ | CaOInit = getParam<Scalar>("Problem.CaOInitial"); | |
211 | ✗ | CaO2H2Init = getParam<Scalar>("Problem.CaO2H2Initial"); | |
212 | |||
213 | ✗ | priVars[pressureIdx] = pInit; | |
214 | ✗ | priVars[H2OIdx] = h2oInit; | |
215 | ✗ | priVars[temperatureIdx] = tInit; | |
216 | |||
217 | // these values are not used, as we didn't set BCs | ||
218 | // for the solid phases. For cell-centered models it is | ||
219 | // important to set the values to fully define Dirichlet BCs | ||
220 | ✗ | priVars[CaOIdx] = CaOInit; | |
221 | ✗ | priVars[CaO2H2Idx] = CaO2H2Init; | |
222 | |||
223 | ✗ | return priVars; | |
224 | } | ||
225 | |||
226 | /*! | ||
227 | * \brief Evaluates the source term for all phases within a given | ||
228 | * sub-control volume in units of \f$ [ \textnormal{unit of conserved quantity} / (m^3 \cdot s )] \f$. | ||
229 | * | ||
230 | * This is the method for the case where the source term is | ||
231 | * potentially solution dependent and requires some quantities that | ||
232 | * are specific to the fully-implicit method. | ||
233 | * | ||
234 | * \param element The finite element | ||
235 | * \param fvGeometry The finite-volume geometry | ||
236 | * \param elemVolVars All volume variables for the element | ||
237 | * \param scv The subcontrolvolume | ||
238 | * | ||
239 | * For this method, the \a values parameter stores the conserved quantity rate | ||
240 | * generated or annihilated per volume unit. Positive values mean | ||
241 | * that the conserved quantity is created, negative ones mean that it vanishes. | ||
242 | * E.g. for the mass balance that would be a mass rate in \f$ [ kg / (m^3 \cdot s)] \f$. | ||
243 | */ | ||
244 | 67200 | NumEqVector source(const Element &element, | |
245 | const FVElementGeometry& fvGeometry, | ||
246 | const ElementVolumeVariables& elemVolVars, | ||
247 | const SubControlVolume &scv) const | ||
248 | { | ||
249 | |||
250 | 67200 | NumEqVector source(0.0); | |
251 | 67200 | const auto& volVars = elemVolVars[scv]; | |
252 | |||
253 | 67200 | Scalar qMass = rrate_.thermoChemReaction(volVars); | |
254 | 134400 | Scalar qMole = qMass/FluidSystem::molarMass(H2OIdx)*(1-volVars.porosity()); | |
255 | |||
256 | // make sure not more solid reacts than present | ||
257 | // In this test, we only consider discharge. Therefore, we use the cPhaseIdx for CaO. | ||
258 |
1/2✗ Branch 2 not taken.
✓ Branch 3 taken 67200 times.
|
134400 | if (-qMole*timeStepSize_ + volVars.solidVolumeFraction(cPhaseIdx)* volVars.solidComponentMolarDensity(cPhaseIdx) < 0 + eps_) |
259 | { | ||
260 | ✗ | qMole = -volVars.solidVolumeFraction(cPhaseIdx)* volVars.solidComponentMolarDensity(cPhaseIdx)/timeStepSize_; | |
261 | } | ||
262 | 134400 | source[conti0EqIdx+CaO2H2Idx] = qMole; | |
263 | 134400 | source[conti0EqIdx+CaOIdx] = - qMole; | |
264 | 134400 | source[conti0EqIdx+H2OIdx] = - qMole; | |
265 | |||
266 | 67200 | Scalar deltaH = 108e3; // J/mol | |
267 | 134400 | source[energyEqIdx] = qMole * deltaH; | |
268 | |||
269 | 67200 | return source; | |
270 | } | ||
271 | |||
272 | |||
273 | /*! | ||
274 | * \brief Returns the permeability. | ||
275 | */ | ||
276 | const std::vector<Scalar>& getPerm() | ||
277 | { | ||
278 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | return permeability_; |
279 | } | ||
280 | |||
281 | /*! | ||
282 | * \brief Returns the porosity. | ||
283 | */ | ||
284 | const std::vector<Scalar>& getPoro() | ||
285 | { | ||
286 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | return porosity_; |
287 | } | ||
288 | |||
289 | /*! | ||
290 | * \brief Returns the reaction rate. | ||
291 | */ | ||
292 | const std::vector<Scalar>& getRRate() | ||
293 | { | ||
294 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | return reactionRate_; |
295 | } | ||
296 | |||
297 | /*! | ||
298 | * \brief Adds additional VTK output data to the VTKWriter. | ||
299 | * | ||
300 | * Function is called by the output module on every write. | ||
301 | */ | ||
302 | 152 | void updateVtkOutput(const SolutionVector& curSol) | |
303 | { | ||
304 |
2/4✓ Branch 1 taken 152 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 152 times.
✗ Branch 5 not taken.
|
304 | auto fvGeometry = localView(this->gridGeometry()); |
305 |
5/10✓ Branch 1 taken 152 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 152 times.
✗ Branch 5 not taken.
✓ Branch 7 taken 152 times.
✗ Branch 8 not taken.
✓ Branch 9 taken 456 times.
✗ Branch 10 not taken.
✓ Branch 13 taken 304 times.
✗ Branch 14 not taken.
|
1216 | for (const auto& element : elements(this->gridGeometry().gridView())) |
306 | { | ||
307 |
2/4✓ Branch 1 taken 304 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 304 times.
✗ Branch 5 not taken.
|
608 | const auto elemSol = elementSolution(element, curSol, this->gridGeometry()); |
308 |
1/2✓ Branch 1 taken 304 times.
✗ Branch 2 not taken.
|
304 | fvGeometry.bindElement(element); |
309 | |||
310 |
4/4✓ Branch 0 taken 1216 times.
✓ Branch 1 taken 304 times.
✓ Branch 2 taken 1216 times.
✓ Branch 3 taken 304 times.
|
3040 | for (auto&& scv : scvs(fvGeometry)) |
311 | { | ||
312 |
1/2✓ Branch 1 taken 1216 times.
✗ Branch 2 not taken.
|
1216 | VolumeVariables volVars; |
313 |
1/2✓ Branch 1 taken 1216 times.
✗ Branch 2 not taken.
|
1216 | volVars.update(elemSol, *this, element, scv); |
314 | 1216 | const auto dofIdxGlobal = scv.dofIndex(); | |
315 | 2432 | permeability_[dofIdxGlobal] = this->spatialParams().permeability(element, scv, elemSol); | |
316 |
1/2✓ Branch 1 taken 1216 times.
✗ Branch 2 not taken.
|
2432 | porosity_[dofIdxGlobal] = volVars.porosity(); |
317 |
1/2✓ Branch 1 taken 1216 times.
✗ Branch 2 not taken.
|
1216 | reactionRate_[dofIdxGlobal] = rrate_.thermoChemReaction(volVars); |
318 | } | ||
319 | } | ||
320 | 152 | } | |
321 | |||
322 | private: | ||
323 | std::string name_; | ||
324 | |||
325 | static constexpr Scalar eps_ = 1e-6; | ||
326 | |||
327 | // boundary conditions | ||
328 | Scalar boundaryPressure_; | ||
329 | Scalar boundaryVaporMoleFrac_; | ||
330 | Scalar boundaryTemperature_; | ||
331 | |||
332 | std::vector<double> permeability_; | ||
333 | std::vector<double> porosity_; | ||
334 | std::vector<double> reactionRate_; | ||
335 | |||
336 | ReactionRate rrate_; | ||
337 | Scalar timeStepSize_; | ||
338 | }; | ||
339 | |||
340 | } // end namespace Dumux | ||
341 | |||
342 | #endif | ||
343 |