Line | Branch | Exec | Source |
---|---|---|---|
1 | // -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- | ||
2 | // vi: set et ts=4 sw=4 sts=4: | ||
3 | // | ||
4 | // SPDX-FileCopyrightInfo: Copyright © DuMux Project contributors, see AUTHORS.md in root folder | ||
5 | // SPDX-License-Identifier: GPL-3.0-or-later | ||
6 | // | ||
7 | |||
8 | #ifndef DUMUX_ONEP_ROTATION_SYMMETRY_PROBLEM_HH | ||
9 | #define DUMUX_ONEP_ROTATION_SYMMETRY_PROBLEM_HH | ||
10 | |||
11 | // ## The problem class (`problem.hh`) | ||
12 | // This file contains the __problem class__ which defines the initial and boundary | ||
13 | // conditions for the single-phase flow simulation. | ||
14 | // [[content]] | ||
15 | // ### Includes | ||
16 | #include <cmath> // for `std::log` | ||
17 | #include <dumux/common/boundarytypes.hh> // for `BoundaryTypes` | ||
18 | #include <dumux/common/properties.hh> // for `GetPropType` | ||
19 | #include <dumux/common/parameters.hh> // for `getParam` | ||
20 | #include <dumux/porousmediumflow/problem.hh> // for `PorousMediumFlowProblem` | ||
21 | |||
22 | // ### The problem class | ||
23 | // We enter the problem class where all necessary boundary conditions and initial conditions are set for our simulation. | ||
24 | // As this is a porous medium flow problem, we inherit from the base class `PorousMediumFlowProblem`. | ||
25 | namespace Dumux { | ||
26 | |||
27 | template<class TypeTag> | ||
28 | 1 | class RotSymExampleProblem : public PorousMediumFlowProblem<TypeTag> | |
29 | { | ||
30 | using ParentType = PorousMediumFlowProblem<TypeTag>; | ||
31 | using GridGeometry = GetPropType<TypeTag, Properties::GridGeometry>; | ||
32 | using Scalar = GetPropType<TypeTag, Properties::Scalar>; | ||
33 | using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>; | ||
34 | using BoundaryTypes = Dumux::BoundaryTypes<PrimaryVariables::size()>; | ||
35 | using Element = typename GridGeometry::GridView::template Codim<0>::Entity; | ||
36 | using GlobalPosition = typename Element::Geometry::GlobalCoordinate; | ||
37 | |||
38 | public: | ||
39 | // In the constructor, we obtain a number of parameters, related to fluid | ||
40 | // properties and boundary conditions, from the input file. | ||
41 | // [[codeblock]] | ||
42 | 1 | RotSymExampleProblem(std::shared_ptr<const GridGeometry> gridGeometry) | |
43 |
6/16✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 1 times.
✗ Branch 5 not taken.
✓ Branch 8 taken 1 times.
✗ Branch 9 not taken.
✓ Branch 10 taken 1 times.
✗ Branch 11 not taken.
✗ Branch 12 not taken.
✓ Branch 13 taken 1 times.
✓ Branch 15 taken 1 times.
✗ Branch 16 not taken.
✗ Branch 17 not taken.
✗ Branch 18 not taken.
✗ Branch 19 not taken.
✗ Branch 20 not taken.
|
3 | : ParentType(gridGeometry) |
44 | { | ||
45 | // fluid properties | ||
46 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | k_ = getParam<Scalar>("SpatialParams.Permeability"); |
47 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | nu_ = getParam<Scalar>("Component.LiquidKinematicViscosity"); |
48 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | rho_ = getParam<Scalar>("Component.LiquidDensity"); |
49 | |||
50 | // The inner radius r1 can be determined from the grid | ||
51 |
2/4✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 1 times.
✗ Branch 5 not taken.
|
2 | r1_ = gridGeometry->bBoxMin()[0]; |
52 | |||
53 | // boundary conditions | ||
54 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | q1_ = getParam<Scalar>("Problem.Q1"); // mass flux into the domain at r1 in kg/s/m |
55 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | p1_ = getParam<Scalar>("Problem.P1"); // pressure at the inner boundary at r1 |
56 | 1 | } | |
57 | // [[/codeblock]] | ||
58 | |||
59 | // #### Specify the types of boundary conditions | ||
60 | // This function is used to define the type of boundary conditions used depending on the location. | ||
61 | // Two types of boundary conditions can be specified: Dirichlet or Neumann boundary condition. | ||
62 | // On a Dirichlet boundary, the values of the primary variables need to be fixed. On a Neumann | ||
63 | // boundary condition, values for derivatives need to be fixed. Here, we use Dirichlet boundary | ||
64 | // conditions on all boundaries. | ||
65 | ✗ | BoundaryTypes boundaryTypesAtPos(const GlobalPosition& globalPos) const | |
66 | { | ||
67 |
1/2✓ Branch 0 taken 10 times.
✗ Branch 1 not taken.
|
10 | BoundaryTypes values; |
68 |
1/2✓ Branch 0 taken 10 times.
✗ Branch 1 not taken.
|
10 | values.setAllDirichlet(); |
69 | ✗ | return values; | |
70 | } | ||
71 | |||
72 | // #### Specify Dirichlet boundary condition values | ||
73 | // This function is used to specify the values of the primary variables at Dirichlet boundaries. | ||
74 | // Here, we evaluate the analytical solution (see below) to define the pressures at the boundaries. | ||
75 | PrimaryVariables dirichletAtPos(const GlobalPosition& globalPos) const | ||
76 | 10 | { return exactSolution(globalPos); } | |
77 | |||
78 | // #### Analytical solution | ||
79 | // The analytical solution to the problem of this example reads: | ||
80 | // | ||
81 | // ```math | ||
82 | // p = p (r) = p_1 - \frac{q_1 \nu}{2 \pi k} \text{ln} (\frac{r}{r_1}), | ||
83 | // ``` | ||
84 | // | ||
85 | // where $`q_1`$ is the mass flux into the domain at the inner radius $`r_1`$ | ||
86 | // (in kg/s/m) and $`\nu = \mu/\varrho`$ is the kinematic viscosity. | ||
87 | // The following function evaluates this solution depending on the | ||
88 | // position in the domain. We use this function here both to specify Dirichlet | ||
89 | // boundaries and to evaluate the error of the numerical solutions obtained for | ||
90 | // different levels of grid refinement. | ||
91 | // [[codeblock]] | ||
92 | 6210 | PrimaryVariables exactSolution(const GlobalPosition& globalPos) const | |
93 | { | ||
94 | 6210 | const auto r = globalPos[0]; | |
95 | 6210 | const auto p = p1_ - 1.0/(2*M_PI)*nu_/k_*q1_*std::log(r/r1_); | |
96 | 6210 | return p; | |
97 | } | ||
98 | |||
99 | ✗ | const Scalar exactVelocity(const GlobalPosition& globalPos) const | |
100 | { | ||
101 | 3100 | const auto r = globalPos[0]; | |
102 | 3100 | const auto v = q1_/(2*M_PI)/rho_/r; | |
103 | ✗ | return v; | |
104 | } | ||
105 | |||
106 | private: | ||
107 | // private data members required for the analytical solution | ||
108 | Scalar q1_, k_, nu_, r1_, p1_, rho_; | ||
109 | }; | ||
110 | |||
111 | } // end namespace Dumux | ||
112 | // [[/codeblock]] | ||
113 | // [[/content]] | ||
114 | #endif | ||
115 |