Line | Branch | Exec | Source |
---|---|---|---|
1 | // -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- | ||
2 | // vi: set et ts=4 sw=4 sts=4: | ||
3 | // | ||
4 | // SPDX-FileCopyrightInfo: Copyright © DuMux Project contributors, see AUTHORS.md in root folder | ||
5 | // SPDX-License-Identifier: GPL-3.0-or-later | ||
6 | // | ||
7 | /*! | ||
8 | * \file | ||
9 | * \ingroup ShallowWaterTests | ||
10 | * \brief A test for the Shallow water model (rough channel). | ||
11 | */ | ||
12 | #ifndef DUMUX_ROUGH_CHANNEL_TEST_PROBLEM_HH | ||
13 | #define DUMUX_ROUGH_CHANNEL_TEST_PROBLEM_HH | ||
14 | |||
15 | #include <dumux/common/boundarytypes.hh> | ||
16 | #include <dumux/common/parameters.hh> | ||
17 | #include <dumux/common/properties.hh> | ||
18 | #include <dumux/common/numeqvector.hh> | ||
19 | |||
20 | #include <dumux/freeflow/shallowwater/problem.hh> | ||
21 | #include <dumux/freeflow/shallowwater/boundaryfluxes.hh> | ||
22 | |||
23 | namespace Dumux { | ||
24 | |||
25 | /*! | ||
26 | * \ingroup ShallowWaterTests | ||
27 | * \brief A simple flow in a rough channel with friction law after Manning. | ||
28 | * | ||
29 | * At the left border a discharge | ||
30 | * boundary condition is applied and at the right border a water depth boundary condition. | ||
31 | * All other boundaries are set to no-flow. Normal flow is assumed, therefore the water depth | ||
32 | * at the right border can be calculated with the formular of Gaukler-Manning-Strickler. | ||
33 | * | ||
34 | * \f[ | ||
35 | * v_m = 1/n * R_{hy}^{2/3} * I_s^{1/2} | ||
36 | * \f] | ||
37 | * | ||
38 | * With the mean velocity | ||
39 | * \f[ | ||
40 | * v_m = \frac{q}/{h} | ||
41 | * \f] | ||
42 | * the friction value n after Manning | ||
43 | * the hydraulic radius R_{hy} equal to the water depth h (because normal flow is assumed) | ||
44 | * the bed slope I_s and the unity inflow discharge q. | ||
45 | * | ||
46 | * Therefore h can be calculated with | ||
47 | * | ||
48 | * \f[ | ||
49 | * h = \left(\frac{n*q}{\sqrt{I_s}} \right)^{3/5} | ||
50 | * \f] | ||
51 | * | ||
52 | * The formula of Gaukler Manning and Strickler is also used to calculate the analytic solution. | ||
53 | * | ||
54 | * This problem uses the \ref ShallowWaterModel | ||
55 | */ | ||
56 | template <class TypeTag> | ||
57 | class RoughChannelProblem : public ShallowWaterProblem<TypeTag> | ||
58 | { | ||
59 | using ParentType = ShallowWaterProblem<TypeTag>; | ||
60 | using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>; | ||
61 | using BoundaryTypes = Dumux::BoundaryTypes<GetPropType<TypeTag, Properties::ModelTraits>::numEq()>; | ||
62 | using Scalar = GetPropType<TypeTag, Properties::Scalar>; | ||
63 | using Indices = typename GetPropType<TypeTag, Properties::ModelTraits>::Indices; | ||
64 | using GridGeometry = GetPropType<TypeTag, Properties::GridGeometry>; | ||
65 | using ElementVolumeVariables = typename GetPropType<TypeTag, Properties::GridVolumeVariables>::LocalView; | ||
66 | using GridVariables = GetPropType<TypeTag, Properties::GridVariables>; | ||
67 | using ElementFluxVariablesCache = typename GridVariables::GridFluxVariablesCache::LocalView; | ||
68 | using VolumeVariables = typename ElementVolumeVariables::VolumeVariables; | ||
69 | using FVElementGeometry = typename GetPropType<TypeTag, Properties::GridGeometry>::LocalView; | ||
70 | using SubControlVolumeFace = typename FVElementGeometry::SubControlVolumeFace; | ||
71 | using GridView = typename GetPropType<TypeTag, Properties::GridGeometry>::GridView; | ||
72 | using Element = typename GridView::template Codim<0>::Entity; | ||
73 | using GlobalPosition = typename Element::Geometry::GlobalCoordinate; | ||
74 | using NumEqVector = Dumux::NumEqVector<PrimaryVariables>; | ||
75 | using NeumannFluxes = NumEqVector; | ||
76 | using SubControlVolume = typename FVElementGeometry::SubControlVolume; | ||
77 | |||
78 | public: | ||
79 | 1 | RoughChannelProblem(std::shared_ptr<const GridGeometry> gridGeometry) | |
80 |
9/26✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 1 times.
✗ Branch 5 not taken.
✓ Branch 8 taken 1 times.
✗ Branch 9 not taken.
✓ Branch 10 taken 1 times.
✗ Branch 11 not taken.
✗ Branch 12 not taken.
✓ Branch 13 taken 1 times.
✓ Branch 15 taken 1 times.
✗ Branch 16 not taken.
✓ Branch 18 taken 1 times.
✗ Branch 19 not taken.
✓ Branch 21 taken 1 times.
✗ Branch 22 not taken.
✓ Branch 24 taken 1 times.
✗ Branch 25 not taken.
✗ Branch 26 not taken.
✗ Branch 27 not taken.
✗ Branch 28 not taken.
✗ Branch 29 not taken.
✗ Branch 32 not taken.
✗ Branch 33 not taken.
✗ Branch 34 not taken.
✗ Branch 35 not taken.
|
3 | : ParentType(gridGeometry) |
81 | { | ||
82 |
2/4✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✗ Branch 4 not taken.
✓ Branch 5 taken 1 times.
|
1 | name_ = getParam<std::string>("Problem.Name"); |
83 |
3/6✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 1 times.
✗ Branch 5 not taken.
✓ Branch 7 taken 1 times.
✗ Branch 8 not taken.
|
2 | exactWaterDepth_.resize(gridGeometry->numDofs(), 0.0); |
84 |
3/8✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 1 times.
✗ Branch 5 not taken.
✓ Branch 7 taken 1 times.
✗ Branch 8 not taken.
✗ Branch 9 not taken.
✗ Branch 10 not taken.
|
2 | exactVelocityX_.resize(gridGeometry->numDofs(), 0.0); |
85 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | constManningN_ = getParam<Scalar>("Problem.ManningN"); |
86 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | bedSlope_ = getParam<Scalar>("Problem.BedSlope"); |
87 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | discharge_ = getParam<Scalar>("Problem.Discharge"); |
88 | 1 | hBoundary_ = this->gauklerManningStrickler(discharge_,constManningN_,bedSlope_); | |
89 | 1 | } | |
90 | |||
91 | //! Get the analytical water depth | ||
92 | const std::vector<Scalar>& getExactWaterDepth() | ||
93 | { | ||
94 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | return exactWaterDepth_; |
95 | } | ||
96 | |||
97 | //! Get the analytical velocity | ||
98 | const std::vector<Scalar>& getExactVelocityX() | ||
99 | { | ||
100 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | return exactVelocityX_; |
101 | } | ||
102 | |||
103 | //! Calculate the water depth with Gaukler-Manning-Strickler | ||
104 | ✗ | Scalar gauklerManningStrickler(Scalar discharge, Scalar manningN, Scalar bedSlope) | |
105 | { | ||
106 | using std::pow; | ||
107 | using std::abs; | ||
108 | using std::sqrt; | ||
109 | |||
110 | ✗ | return pow(abs(discharge)*manningN/sqrt(bedSlope), 0.6); | |
111 | } | ||
112 | |||
113 | //! Update the analytical solution | ||
114 | 24 | void updateAnalyticalSolution() | |
115 | { | ||
116 | using std::abs; | ||
117 | |||
118 |
1/2✓ Branch 3 taken 60024 times.
✗ Branch 4 not taken.
|
120072 | for (const auto& element : elements(this->gridGeometry().gridView())) |
119 | { | ||
120 | 60000 | const Scalar h = this->gauklerManningStrickler(discharge_,constManningN_,bedSlope_); | |
121 | 60000 | const Scalar u = abs(discharge_)/h; | |
122 | |||
123 | 180000 | const auto eIdx = this->gridGeometry().elementMapper().index(element); | |
124 | 120000 | exactWaterDepth_[eIdx] = h; | |
125 | 120000 | exactVelocityX_[eIdx] = u; | |
126 | } | ||
127 | 24 | } | |
128 | |||
129 | /*! | ||
130 | * \name Problem parameters | ||
131 | */ | ||
132 | // \{ | ||
133 | |||
134 | /*! | ||
135 | * \brief The problem name | ||
136 | * | ||
137 | * This is used as a prefix for files generated by the simulation. | ||
138 | */ | ||
139 | const std::string& name() const | ||
140 | { | ||
141 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | return name_; |
142 | } | ||
143 | |||
144 | /*! | ||
145 | * \brief Evaluate the source term for all balance equations within a given | ||
146 | * sub-control-volume. | ||
147 | * | ||
148 | * This is the method for the case where the source term is | ||
149 | * potentially solution dependent and requires some quantities that | ||
150 | * are specific to the fully-implicit method. | ||
151 | * | ||
152 | * \param element The finite element | ||
153 | * \param fvGeometry The finite-volume geometry | ||
154 | * \param elemVolVars All volume variables for the element | ||
155 | * \param scv The sub control volume | ||
156 | * | ||
157 | * For this method, the \a values parameter stores the conserved quantity rate | ||
158 | * generated or annihilate per volume unit. Positive values mean | ||
159 | * that the conserved quantity is created, negative ones mean that it vanishes. | ||
160 | * E.g. for the mass balance that would be a mass rate in \f$ [ kg / (m^3 \cdot s)] \f$. | ||
161 | */ | ||
162 | 523835 | NumEqVector source(const Element& element, | |
163 | const FVElementGeometry& fvGeometry, | ||
164 | const ElementVolumeVariables& elemVolVars, | ||
165 | const SubControlVolume &scv) const | ||
166 | { | ||
167 | |||
168 | 523835 | NumEqVector source (0.0); | |
169 | |||
170 | 523835 | source += bottomFrictionSource(element, fvGeometry, elemVolVars, scv); | |
171 | |||
172 | 523835 | return source; | |
173 | } | ||
174 | |||
175 | /*! | ||
176 | * \brief Compute the source term due to bottom friction | ||
177 | * | ||
178 | * \param element The finite element | ||
179 | * \param fvGeometry The finite-volume geometry | ||
180 | * \param elemVolVars All volume variables for the element | ||
181 | * \param scv The sub control volume | ||
182 | * | ||
183 | * \return source | ||
184 | */ | ||
185 | 523835 | NumEqVector bottomFrictionSource(const Element& element, | |
186 | const FVElementGeometry& fvGeometry, | ||
187 | const ElementVolumeVariables& elemVolVars, | ||
188 | const SubControlVolume &scv) const | ||
189 | { | ||
190 | 523835 | NumEqVector bottomFrictionSource(0.0); | |
191 | |||
192 | 523835 | const auto& volVars = elemVolVars[scv]; | |
193 | 1571505 | Dune::FieldVector<Scalar, 2> bottomShearStress = this->spatialParams().frictionLaw(element, scv).bottomShearStress(volVars); | |
194 | |||
195 | 1047670 | bottomFrictionSource[0] = 0.0; | |
196 | 2095340 | bottomFrictionSource[1] = -bottomShearStress[0] / volVars.density(); | |
197 | 2095340 | bottomFrictionSource[2] = -bottomShearStress[1] / volVars.density(); | |
198 | |||
199 | 523835 | return bottomFrictionSource; | |
200 | } | ||
201 | |||
202 | // \} | ||
203 | |||
204 | /*! | ||
205 | * \name Boundary conditions | ||
206 | */ | ||
207 | // \{ | ||
208 | |||
209 | /*! | ||
210 | * \brief Specifies which kind of boundary condition should be | ||
211 | * used for which equation on a given boundary segment. | ||
212 | * | ||
213 | * \param globalPos The position for which the boundary type is set | ||
214 | */ | ||
215 | ✗ | BoundaryTypes boundaryTypesAtPos(const GlobalPosition &globalPos) const | |
216 | { | ||
217 | 268256 | BoundaryTypes bcTypes; | |
218 |
2/4✗ Branch 0 not taken.
✓ Branch 1 taken 56560 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 211696 times.
|
268256 | bcTypes.setAllNeumann(); |
219 | ✗ | return bcTypes; | |
220 | } | ||
221 | |||
222 | /*! | ||
223 | * \brief Specifies the neumann boundary | ||
224 | * | ||
225 | * We need the Riemann invariants to compute the values depending of the boundary type. | ||
226 | * Since we use a weak imposition we do not have a dirichlet value. We impose fluxes | ||
227 | * based on q, h, etc. computed with the Riemann invariants | ||
228 | * | ||
229 | * \param element | ||
230 | * \param fvGeometry | ||
231 | * \param elemVolVars | ||
232 | * \param elemFluxVarsCache | ||
233 | * \param scvf | ||
234 | */ | ||
235 | 211696 | NeumannFluxes neumann(const Element& element, | |
236 | const FVElementGeometry& fvGeometry, | ||
237 | const ElementVolumeVariables& elemVolVars, | ||
238 | const ElementFluxVariablesCache& elemFluxVarsCache, | ||
239 | const SubControlVolumeFace& scvf) const | ||
240 | { | ||
241 | 211696 | NeumannFluxes values(0.0); | |
242 | |||
243 | 423392 | const auto& insideScv = fvGeometry.scv(scvf.insideScvIdx()); | |
244 | 211696 | const auto& insideVolVars = elemVolVars[insideScv]; | |
245 |
2/2✓ Branch 0 taken 1045 times.
✓ Branch 1 taken 210651 times.
|
211696 | const auto& nxy = scvf.unitOuterNormal(); |
246 |
4/4✓ Branch 0 taken 1045 times.
✓ Branch 1 taken 210651 times.
✓ Branch 2 taken 1045 times.
✓ Branch 3 taken 210651 times.
|
423392 | const auto gravity = this->spatialParams().gravity(scvf.center()); |
247 | std::array<Scalar, 3> boundaryStateVariables; | ||
248 | |||
249 | // impose discharge at the left side | ||
250 |
12/12✓ Branch 0 taken 1045 times.
✓ Branch 1 taken 210651 times.
✓ Branch 2 taken 1045 times.
✓ Branch 3 taken 210651 times.
✓ Branch 4 taken 1045 times.
✓ Branch 5 taken 210651 times.
✓ Branch 6 taken 1045 times.
✓ Branch 7 taken 210651 times.
✓ Branch 8 taken 1045 times.
✓ Branch 9 taken 210651 times.
✓ Branch 10 taken 1045 times.
✓ Branch 11 taken 210651 times.
|
1270176 | if (scvf.center()[0] < this->gridGeometry().bBoxMin()[0] + eps_) |
251 | { | ||
252 | 4180 | boundaryStateVariables = ShallowWater::fixedDischargeBoundary(discharge_, | |
253 | insideVolVars.waterDepth(), | ||
254 | insideVolVars.velocity(0), | ||
255 | insideVolVars.velocity(1), | ||
256 | gravity, | ||
257 | nxy); | ||
258 | } | ||
259 | // impose water depth at the right side | ||
260 |
12/12✓ Branch 0 taken 1120 times.
✓ Branch 1 taken 209531 times.
✓ Branch 2 taken 1120 times.
✓ Branch 3 taken 209531 times.
✓ Branch 4 taken 1120 times.
✓ Branch 5 taken 209531 times.
✓ Branch 6 taken 1120 times.
✓ Branch 7 taken 209531 times.
✓ Branch 8 taken 1120 times.
✓ Branch 9 taken 209531 times.
✓ Branch 10 taken 1120 times.
✓ Branch 11 taken 209531 times.
|
1263906 | else if (scvf.center()[0] > this->gridGeometry().bBoxMax()[0] - eps_) |
261 | { | ||
262 | 4480 | boundaryStateVariables = ShallowWater::fixedWaterDepthBoundary(hBoundary_, | |
263 | insideVolVars.waterDepth(), | ||
264 | insideVolVars.velocity(0), | ||
265 | insideVolVars.velocity(1), | ||
266 | gravity, | ||
267 | nxy); | ||
268 | } | ||
269 | // no flow boundary | ||
270 | else | ||
271 | { | ||
272 | 419062 | boundaryStateVariables[0] = insideVolVars.waterDepth(); | |
273 | 419062 | boundaryStateVariables[1] = -insideVolVars.velocity(0); | |
274 | 628593 | boundaryStateVariables[2] = -insideVolVars.velocity(1); | |
275 | } | ||
276 | |||
277 | 211696 | auto riemannFlux = ShallowWater::riemannProblem(insideVolVars.waterDepth(), | |
278 | 423392 | boundaryStateVariables[0], | |
279 | insideVolVars.velocity(0), | ||
280 | 423392 | boundaryStateVariables[1], | |
281 | insideVolVars.velocity(1), | ||
282 | 423392 | boundaryStateVariables[2], | |
283 | insideVolVars.bedSurface(), | ||
284 | insideVolVars.bedSurface(), | ||
285 | gravity, | ||
286 | nxy); | ||
287 | |||
288 | 635088 | values[Indices::massBalanceIdx] = riemannFlux[0]; | |
289 | 635088 | values[Indices::velocityXIdx] = riemannFlux[1]; | |
290 | 635088 | values[Indices::velocityYIdx] = riemannFlux[2]; | |
291 | |||
292 | 211696 | return values; | |
293 | } | ||
294 | |||
295 | // \} | ||
296 | |||
297 | /*! | ||
298 | * \name Volume terms | ||
299 | */ | ||
300 | // \{ | ||
301 | |||
302 | /*! | ||
303 | * \brief Evaluate the initial values for a control volume. | ||
304 | * | ||
305 | * For this method, the \a values parameter stores primary | ||
306 | * variables. | ||
307 | * | ||
308 | * \param globalPos The position for which the boundary type is set | ||
309 | */ | ||
310 | ✗ | PrimaryVariables initialAtPos(const GlobalPosition &globalPos) const | |
311 | { | ||
312 | 2500 | PrimaryVariables values(0.0); | |
313 | |||
314 | 5000 | values[0] = hBoundary_; | |
315 | 7500 | values[1] = abs(discharge_)/hBoundary_; | |
316 | 5000 | values[2] = 0.0; | |
317 | |||
318 | ✗ | return values; | |
319 | }; | ||
320 | |||
321 | // \} | ||
322 | |||
323 | private: | ||
324 | std::vector<Scalar> exactWaterDepth_; | ||
325 | std::vector<Scalar> exactVelocityX_; | ||
326 | Scalar hBoundary_; | ||
327 | Scalar constManningN_; // analytic solution is only available for const friction. | ||
328 | Scalar bedSlope_; | ||
329 | Scalar discharge_; // discharge at the inflow boundary | ||
330 | static constexpr Scalar eps_ = 1.0e-6; | ||
331 | std::string name_; | ||
332 | }; | ||
333 | |||
334 | } //end namespace Dumux | ||
335 | |||
336 | #endif | ||
337 |