Line | Branch | Exec | Source |
---|---|---|---|
1 | // -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- | ||
2 | // vi: set et ts=4 sw=4 sts=4: | ||
3 | // | ||
4 | // SPDX-FileCopyrightInfo: Copyright © DuMux Project contributors, see AUTHORS.md in root folder | ||
5 | // SPDX-License-Identifier: GPL-3.0-or-later | ||
6 | // | ||
7 | /*! | ||
8 | * \file | ||
9 | * \ingroup TwoPTwoCTests | ||
10 | * \brief Evaporation problem where two components with constant properties mix and evaporate. | ||
11 | */ | ||
12 | |||
13 | #ifndef DUMUX_EVAPORATION_CONSTANT_COMPONENT_PROBLEM_HH | ||
14 | #define DUMUX_EVAPORATION_CONSTANT_COMPONENT_PROBLEM_HH | ||
15 | |||
16 | #include <dumux/common/properties.hh> | ||
17 | #include <dumux/common/parameters.hh> | ||
18 | #include <dumux/common/boundarytypes.hh> | ||
19 | #include <dumux/common/numeqvector.hh> | ||
20 | |||
21 | #include <dumux/porousmediumflow/problem.hh> | ||
22 | |||
23 | namespace Dumux { | ||
24 | |||
25 | /*! | ||
26 | * \ingroup TwoPTwoCModel | ||
27 | * \brief Evaporation problem where two components with constant properties mix and evaporate. | ||
28 | * | ||
29 | */ | ||
30 | template <class TypeTag > | ||
31 | class EvaporationConstantComponentProblem : public PorousMediumFlowProblem<TypeTag> | ||
32 | { | ||
33 | using ParentType = PorousMediumFlowProblem<TypeTag>; | ||
34 | |||
35 | using Scalar = GetPropType<TypeTag, Properties::Scalar>; | ||
36 | using GridGeometry = GetPropType<TypeTag, Properties::GridGeometry>; | ||
37 | using GridView = typename GridGeometry::GridView; | ||
38 | using GridVariables = GetPropType<TypeTag, Properties::GridVariables>; | ||
39 | using ElementVolumeVariables = typename GridVariables::GridVolumeVariables::LocalView; | ||
40 | using ElementFluxVariablesCache = typename GridVariables::GridFluxVariablesCache::LocalView; | ||
41 | using FVElementGeometry = typename GetPropType<TypeTag, Properties::GridGeometry>::LocalView; | ||
42 | using SubControlVolumeFace = typename FVElementGeometry::SubControlVolumeFace; | ||
43 | using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>; | ||
44 | using ModelTraits = GetPropType<TypeTag, Properties::ModelTraits>; | ||
45 | using Indices = typename ModelTraits::Indices; | ||
46 | |||
47 | // primary variable indices | ||
48 | enum | ||
49 | { | ||
50 | pressureIdx = Indices::pressureIdx, | ||
51 | switchIdx = Indices::switchIdx, | ||
52 | temperatureIdx = Indices::temperatureIdx, | ||
53 | energyEqIdx = Indices::energyEqIdx | ||
54 | }; | ||
55 | |||
56 | // equation indices | ||
57 | enum | ||
58 | { | ||
59 | contiH2OEqIdx = Indices::conti0EqIdx + FluidSystem::comp0Idx, | ||
60 | contiN2EqIdx = Indices::conti0EqIdx + FluidSystem::comp1Idx | ||
61 | }; | ||
62 | |||
63 | using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>; | ||
64 | using NumEqVector = Dumux::NumEqVector<PrimaryVariables>; | ||
65 | using BoundaryTypes = Dumux::BoundaryTypes<GetPropType<TypeTag, Properties::ModelTraits>::numEq()>; | ||
66 | using Element = typename GridView::template Codim<0>::Entity; | ||
67 | using GlobalPosition = typename Element::Geometry::GlobalCoordinate; | ||
68 | |||
69 | //! Property that defines whether mole or mass fractions are used | ||
70 | static constexpr bool useMoles = ModelTraits::useMoles(); | ||
71 | |||
72 | public: | ||
73 | 4 | EvaporationConstantComponentProblem(std::shared_ptr<const GridGeometry> gridGeometry) | |
74 |
7/20✓ Branch 1 taken 4 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 4 times.
✗ Branch 5 not taken.
✓ Branch 8 taken 4 times.
✗ Branch 9 not taken.
✓ Branch 10 taken 4 times.
✗ Branch 11 not taken.
✗ Branch 12 not taken.
✓ Branch 13 taken 4 times.
✓ Branch 15 taken 4 times.
✗ Branch 16 not taken.
✓ Branch 18 taken 4 times.
✗ Branch 19 not taken.
✗ Branch 20 not taken.
✗ Branch 21 not taken.
✗ Branch 22 not taken.
✗ Branch 23 not taken.
✗ Branch 26 not taken.
✗ Branch 27 not taken.
|
12 | : ParentType(gridGeometry) |
75 | { | ||
76 |
1/2✓ Branch 1 taken 4 times.
✗ Branch 2 not taken.
|
4 | FluidSystem::init(); |
77 | |||
78 |
2/4✓ Branch 1 taken 4 times.
✗ Branch 2 not taken.
✗ Branch 4 not taken.
✓ Branch 5 taken 4 times.
|
4 | name_ = getParam<std::string>("Problem.Name"); |
79 | |||
80 | //stating in the console whether mole or mass fractions are used | ||
81 | if(useMoles) | ||
82 |
1/2✓ Branch 2 taken 4 times.
✗ Branch 3 not taken.
|
8 | std::cout << "The problem uses mole-fractions" << std::endl; |
83 | else | ||
84 | std::cout << "The problem uses mass-fractions" << std::endl; | ||
85 | 4 | } | |
86 | |||
87 | |||
88 | /*! | ||
89 | * \brief The problem name. | ||
90 | * | ||
91 | * This is used as a prefix for files generated by the simulation. | ||
92 | */ | ||
93 | const std::string& name() const | ||
94 |
1/2✓ Branch 1 taken 4 times.
✗ Branch 2 not taken.
|
4 | { return name_; } |
95 | |||
96 | /*! | ||
97 | * \brief Specifies which kind of boundary condition should be | ||
98 | * used for which equation on a given boundary segment. | ||
99 | * | ||
100 | * \param globalPos The position for which the bc type should be evaluated | ||
101 | */ | ||
102 | ✗ | BoundaryTypes boundaryTypesAtPos(const GlobalPosition &globalPos) const | |
103 | { | ||
104 | ✗ | BoundaryTypes bcTypes; | |
105 | ✗ | if(globalPos[0] < eps_) | |
106 | bcTypes.setAllDirichlet(); | ||
107 | else | ||
108 | bcTypes.setAllNeumann(); | ||
109 | |||
110 | ✗ | return bcTypes; | |
111 | } | ||
112 | |||
113 | /*! | ||
114 | * \brief Evaluates the boundary conditions for a Neumann boundary segment. | ||
115 | * | ||
116 | * \param element The finite element | ||
117 | * \param fvGeometry The finite volume geometry of the element | ||
118 | * \param elemVolVars The element volume variables | ||
119 | * \param elemFluxVarsCache Flux variables caches for all faces in stencil | ||
120 | * \param scvf The sub-control volume face | ||
121 | * | ||
122 | * Negative values mean influx. | ||
123 | */ | ||
124 | 70960 | NumEqVector neumann(const Element& element, | |
125 | const FVElementGeometry& fvGeometry, | ||
126 | const ElementVolumeVariables& elemVolVars, | ||
127 | const ElementFluxVariablesCache& elemFluxVarsCache, | ||
128 | const SubControlVolumeFace& scvf) const | ||
129 | { | ||
130 | 70960 | NumEqVector values(0.0); | |
131 |
2/2✓ Branch 0 taken 20800 times.
✓ Branch 1 taken 40560 times.
|
80560 | const auto& globalPos = scvf.ipGlobal(); |
132 |
4/4✓ Branch 0 taken 20800 times.
✓ Branch 1 taken 40560 times.
✓ Branch 2 taken 20800 times.
✓ Branch 3 taken 40560 times.
|
141920 | const auto& volVars = elemVolVars[scvf.insideScvIdx()]; |
133 | 70960 | Scalar boundaryLayerThickness = 0.0016; | |
134 | //right side | ||
135 |
10/10✓ Branch 0 taken 24000 times.
✓ Branch 1 taken 46960 times.
✓ Branch 2 taken 24000 times.
✓ Branch 3 taken 46960 times.
✓ Branch 4 taken 24000 times.
✓ Branch 5 taken 46960 times.
✓ Branch 6 taken 24000 times.
✓ Branch 7 taken 46960 times.
✓ Branch 8 taken 24000 times.
✓ Branch 9 taken 46960 times.
|
354800 | if (globalPos[0] > this->gridGeometry().bBoxMax()[0] - eps_) |
136 | { | ||
137 | 24000 | Scalar massFracInside = volVars.massFraction(FluidSystem::phase1Idx, FluidSystem::comp0Idx); | |
138 | 24000 | Scalar massFracRef = 0.0; | |
139 | 24000 | Scalar evaporationRate = volVars.diffusionCoefficient(FluidSystem::phase1Idx, FluidSystem::comp1Idx, FluidSystem::comp0Idx) | |
140 | 24000 | * (massFracInside - massFracRef) | |
141 | 24000 | / boundaryLayerThickness | |
142 | 24000 | * volVars.density(FluidSystem::phase1Idx); | |
143 | 24000 | values[Indices::conti0EqIdx] = evaporationRate; | |
144 | 24000 | values[Indices::conti0EqIdx+1] = -evaporationRate; | |
145 | |||
146 | 24000 | values[Indices::energyEqIdx] = FluidSystem::enthalpy(volVars.fluidState(), FluidSystem::phase1Idx) * evaporationRate; | |
147 | 48000 | values[Indices::energyEqIdx] += FluidSystem::thermalConductivity(volVars.fluidState(), FluidSystem::phase1Idx) | |
148 | 48000 | * (volVars.temperature() - 293.15)/boundaryLayerThickness; | |
149 | } | ||
150 | 70960 | return values; | |
151 | } | ||
152 | |||
153 | /*! | ||
154 | * \brief Evaluates the boundary conditions for a Dirichlet boundary segment. | ||
155 | * | ||
156 | * \param globalPos The position for which the Dirichlet condition should be evaluated | ||
157 | */ | ||
158 | ✗ | PrimaryVariables dirichletAtPos(const GlobalPosition &globalPos) const | |
159 | { | ||
160 | 4040 | PrimaryVariables priVars(0.0); | |
161 | 4040 | priVars.setState(Indices::bothPhases); | |
162 | 4040 | priVars[pressureIdx] = 1.e5; | |
163 | 4040 | priVars[switchIdx] = 0.6; //sn | |
164 | 8080 | priVars[temperatureIdx] = 298.15; | |
165 | |||
166 | ✗ | return priVars; | |
167 | |||
168 | } | ||
169 | |||
170 | |||
171 | |||
172 | /*! | ||
173 | * \brief Evaluates the initial value for a control volume. | ||
174 | * | ||
175 | * \param globalPos The position for which the initial condition should be evaluated | ||
176 | * | ||
177 | * For this method, the \a values parameter stores primary | ||
178 | * variables. | ||
179 | */ | ||
180 | ✗ | PrimaryVariables initialAtPos(const GlobalPosition &globalPos) const | |
181 | { | ||
182 | ✗ | PrimaryVariables priVars(0.0); | |
183 | ✗ | priVars.setState(Indices::bothPhases); | |
184 | ✗ | priVars[pressureIdx] = 1e5; | |
185 | ✗ | priVars[switchIdx] = 0.6; //sn | |
186 | ✗ | priVars[temperatureIdx] = 293.15; | |
187 | ✗ | return priVars; | |
188 | } | ||
189 | |||
190 | private: | ||
191 | |||
192 | static constexpr Scalar eps_ = 1e-2; | ||
193 | std::string name_; | ||
194 | }; | ||
195 | |||
196 | } // end namespace Dumux | ||
197 | |||
198 | #endif | ||
199 |