GCC Code Coverage Report


Directory: ../../../builds/dumux-repositories/
File: dumux/test/multidomain/boundary/stokesdarcy/1p2c_2p2c/problem_stokes.hh
Date: 2025-04-19 19:19:10
Exec Total Coverage
Lines: 112 112 100.0%
Functions: 7 7 100.0%
Branches: 48 76 63.2%

Line Branch Exec Source
1 // -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
2 // vi: set et ts=4 sw=4 sts=4:
3 //
4 // SPDX-FileCopyrightText: Copyright © DuMux Project contributors, see AUTHORS.md in root folder
5 // SPDX-License-Identifier: GPL-3.0-or-later
6 //
7 /*!
8 * \file
9 * \ingroup BoundaryTests
10 * \brief A simple Stokes test problem for the staggered grid (Navier-)Stokes model.
11 */
12
13 #ifndef DUMUX_STOKES1P2C_SUBPROBLEM_HH
14 #define DUMUX_STOKES1P2C_SUBPROBLEM_HH
15
16 #include <dumux/common/properties.hh>
17 #include <dumux/common/parameters.hh>
18 #include <dumux/common/timeloop.hh>
19 #include <dumux/common/numeqvector.hh>
20
21 #include <dumux/freeflow/navierstokes/boundarytypes.hh>
22 #include <dumux/freeflow/navierstokes/staggered/problem.hh>
23
24 #include <dumux/multidomain/boundary/stokesdarcy/couplingdata.hh>
25
26 namespace Dumux {
27
28 /*!
29 * \ingroup BoundaryTests
30 * \brief Test problem for the one-phase (Navier-) Stokes problem.
31 *
32 * Horizontal flow from left to right with a parabolic velocity profile.
33 */
34 template <class TypeTag>
35 class StokesSubProblem : public NavierStokesStaggeredProblem<TypeTag>
36 {
37 using ParentType = NavierStokesStaggeredProblem<TypeTag>;
38
39 using GridView = typename GetPropType<TypeTag, Properties::GridGeometry>::GridView;
40 using Scalar = GetPropType<TypeTag, Properties::Scalar>;
41 using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
42 using Indices = typename GetPropType<TypeTag, Properties::ModelTraits>::Indices;
43 using BoundaryTypes = Dumux::NavierStokesBoundaryTypes<GetPropType<TypeTag, Properties::ModelTraits>::numEq()>;
44
45 using GridGeometry = GetPropType<TypeTag, Properties::GridGeometry>;
46 using FVElementGeometry = typename GridGeometry::LocalView;
47 using SubControlVolumeFace = typename FVElementGeometry::SubControlVolumeFace;
48 using Element = typename GridView::template Codim<0>::Entity;
49 using ElementVolumeVariables = typename GetPropType<TypeTag, Properties::GridVolumeVariables>::LocalView;
50 using ElementFaceVariables = typename GetPropType<TypeTag, Properties::GridFaceVariables>::LocalView;
51 using FluidState = GetPropType<TypeTag, Properties::FluidState>;
52
53 using GlobalPosition = typename Element::Geometry::GlobalCoordinate;
54
55 using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
56 using NumEqVector = Dumux::NumEqVector<PrimaryVariables>;
57
58 using CouplingManager = GetPropType<TypeTag, Properties::CouplingManager>;
59 using TimeLoopPtr = std::shared_ptr<TimeLoop<Scalar>>;
60
61 using DiffusionCoefficientAveragingType = typename StokesDarcyCouplingOptions::DiffusionCoefficientAveragingType;
62
63 static constexpr bool useMoles = GetPropType<TypeTag, Properties::ModelTraits>::useMoles();
64
65 public:
66 2 StokesSubProblem(std::shared_ptr<const GridGeometry> gridGeometry, std::shared_ptr<CouplingManager> couplingManager)
67
1/2
✓ Branch 2 taken 2 times.
✗ Branch 3 not taken.
6 : ParentType(gridGeometry, "Stokes"), eps_(1e-6), couplingManager_(couplingManager)
68 {
69
1/2
✓ Branch 1 taken 2 times.
✗ Branch 2 not taken.
2 refVelocity_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.RefVelocity");
70
1/2
✓ Branch 1 taken 2 times.
✗ Branch 2 not taken.
2 refPressure_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.RefPressure");
71
1/2
✓ Branch 1 taken 2 times.
✗ Branch 2 not taken.
2 refTemperature_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.RefTemperature");
72
1/2
✓ Branch 1 taken 2 times.
✗ Branch 2 not taken.
2 Scalar refRelativeHumidity = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.RefRelHumidity");
73
74
75
2/4
✓ Branch 1 taken 2 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 2 times.
✗ Branch 5 not taken.
2 diffCoeffAvgType_ = StokesDarcyCouplingOptions::stringToEnum(DiffusionCoefficientAveragingType{},
76
1/2
✓ Branch 1 taken 2 times.
✗ Branch 2 not taken.
2 getParamFromGroup<std::string>(this->paramGroup(), "Problem.InterfaceDiffusionCoefficientAvg"));
77
3/6
✓ Branch 1 taken 2 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 2 times.
✗ Branch 5 not taken.
✓ Branch 7 taken 2 times.
✗ Branch 8 not taken.
4 problemName_ = getParam<std::string>("Vtk.OutputName") + "_" + getParamFromGroup<std::string>(this->paramGroup(), "Problem.Name");
78
79 2 FluidState fluidState;
80
1/2
✓ Branch 1 taken 2 times.
✗ Branch 2 not taken.
2 fluidState.setPressure(FluidSystem::phase0Idx, refPressure_);
81
1/2
✓ Branch 1 taken 2 times.
✗ Branch 2 not taken.
2 fluidState.setTemperature(refTemperature_);
82
1/2
✓ Branch 1 taken 2 times.
✗ Branch 2 not taken.
2 const auto h2oIdx = FluidSystem::compIdx(FluidSystem::MultiPhaseFluidSystem::H2OIdx);
83 2 Scalar vapPressure = FluidSystem::vaporPressure(fluidState, h2oIdx);
84 2 refMoleFrac_ = refRelativeHumidity * vapPressure / refPressure_;
85 2 }
86
87 /*!
88 * \name Problem parameters
89 */
90 // \{
91
92 /*!
93 * \brief The problem name.
94 */
95 2 const std::string& name() const
96 {
97
1/2
✓ Branch 1 taken 2 times.
✗ Branch 2 not taken.
2 return problemName_;
98 }
99
100 /*!
101 * \brief Returns the sources within the domain.
102 *
103 * \param globalPos The global position
104 */
105 3111632 NumEqVector sourceAtPos(const GlobalPosition &globalPos) const
106
2/2
✓ Branch 0 taken 1689072 times.
✓ Branch 1 taken 656040 times.
5456744 { return NumEqVector(0.0); }
107
108 // \}
109 /*!
110 * \name Boundary conditions
111 */
112 // \{
113
114 /*!
115 * \brief Specifies which kind of boundary condition should be
116 * used for which equation on a given boundary segment.
117 *
118 * \param element The finite element
119 * \param scvf The sub control volume face
120 */
121 1653922 BoundaryTypes boundaryTypes(const Element& element,
122 const SubControlVolumeFace& scvf) const
123 {
124
2/2
✓ Branch 1 taken 1411368 times.
✓ Branch 2 taken 242554 times.
1653922 BoundaryTypes values;
125
126
2/2
✓ Branch 0 taken 882256 times.
✓ Branch 1 taken 152512 times.
1653922 const auto& globalPos = scvf.center();
127
128 #if NONISOTHERMAL
129 1034768 values.setNeumann(Indices::energyEqIdx);
130 #endif
131
132
4/4
✓ Branch 0 taken 1411368 times.
✓ Branch 1 taken 242554 times.
✓ Branch 2 taken 507113 times.
✓ Branch 3 taken 904255 times.
1653922 if (onUpperBoundary_(globalPos) || onLeftBoundary_(globalPos))
133 {
134 749667 values.setDirichlet(Indices::velocityXIdx);
135 749667 values.setDirichlet(Indices::velocityYIdx);
136 749667 values.setNeumann(Indices::conti0EqIdx);
137 749667 values.setNeumann(Indices::conti0EqIdx + 1);
138 }
139
140
2/2
✓ Branch 0 taken 575807 times.
✓ Branch 1 taken 1078115 times.
1653922 if (onRightBoundary_(globalPos))
141 {
142 575807 values.setDirichlet(Indices::pressureIdx);
143 575807 values.setOutflow(Indices::conti0EqIdx + 1);
144
145 #if NONISOTHERMAL
146 357480 values.setOutflow(Indices::energyEqIdx);
147 #endif
148 }
149
150 3307844 if (couplingManager().isCoupledEntity(CouplingManager::stokesIdx, scvf))
151 {
152 328448 values.setCouplingNeumann(Indices::conti0EqIdx);
153 328448 values.setCouplingNeumann(Indices::conti0EqIdx + 1);
154 328448 values.setCouplingNeumann(Indices::momentumYBalanceIdx);
155 328448 values.setBeaversJoseph(Indices::momentumXBalanceIdx);
156 }
157 1653922 return values;
158 }
159
160 /*!
161 * \brief Evaluates the boundary conditions for a Dirichlet control volume.
162 */
163 371086 PrimaryVariables dirichletAtPos(const GlobalPosition& pos) const
164 {
165 PrimaryVariables values(0.0);
166
2/12
✗ Branch 1 not taken.
✗ Branch 2 not taken.
✗ Branch 4 not taken.
✗ Branch 5 not taken.
✓ Branch 7 taken 186804 times.
✗ Branch 8 not taken.
✗ Branch 10 not taken.
✗ Branch 11 not taken.
✗ Branch 13 not taken.
✗ Branch 14 not taken.
✓ Branch 16 taken 68694 times.
✗ Branch 17 not taken.
371086 values = initialAtPos(pos);
167
168 return values;
169 }
170
171 /*!
172 * \brief Evaluates the boundary conditions for a Neumann control volume.
173 *
174 * \param element The element for which the Neumann boundary condition is set
175 * \param fvGeometry The fvGeometry
176 * \param elemVolVars The element volume variables
177 * \param elemFaceVars The element face variables
178 * \param scvf The boundary sub control volume face
179 */
180 194723 NumEqVector neumann(const Element& element,
181 const FVElementGeometry& fvGeometry,
182 const ElementVolumeVariables& elemVolVars,
183 const ElementFaceVariables& elemFaceVars,
184 const SubControlVolumeFace& scvf) const
185 {
186 194723 PrimaryVariables values(0.0);
187 194723 const auto& globalPos = scvf.dofPosition();
188 194723 const auto& scv = fvGeometry.scv(scvf.insideScvIdx());
189
190 194723 FluidState fluidState;
191 194723 updateFluidStateForBC_(fluidState, elemVolVars[scv].pressure());
192
193 194723 const Scalar density = useMoles ? fluidState.molarDensity(0) : fluidState.density(0);
194 194723 const Scalar xVelocity = xVelocity_(globalPos);
195
196 194723 if (onLeftBoundary_(globalPos))
197 {
198 // rho*v*X at inflow
199 74101 values[Indices::conti0EqIdx + 1] = -xVelocity * density * refMoleFrac();
200 74101 values[Indices::conti0EqIdx] = -xVelocity * density * (1.0 - refMoleFrac());
201
202 #if NONISOTHERMAL
203 42220 values[Indices::energyEqIdx] = -xVelocity * fluidState.density(0) * fluidState.enthalpy(0);
204 #endif
205 }
206
207 303944 if(couplingManager().isCoupledEntity(CouplingManager::stokesIdx, scvf))
208 {
209 85502 values[Indices::momentumYBalanceIdx] = couplingManager().couplingData().momentumCouplingCondition(element, fvGeometry, elemVolVars, elemFaceVars, scvf);
210
211 85502 const auto massFlux = couplingManager().couplingData().massCouplingCondition(element, fvGeometry, elemVolVars, elemFaceVars, scvf, diffCoeffAvgType_);
212 85502 values[Indices::conti0EqIdx] = massFlux[0];
213 85502 values[Indices::conti0EqIdx + 1] = massFlux[1];
214
215 #if NONISOTHERMAL
216 48356 values[Indices::energyEqIdx] = couplingManager().couplingData().energyCouplingCondition(element, fvGeometry, elemVolVars, elemFaceVars, scvf, diffCoeffAvgType_);
217 #endif
218
219 }
220 194723 return values;
221 }
222
223 // \}
224
225 //! Get the coupling manager
226 2353145 const CouplingManager& couplingManager() const
227 1934147 { return *couplingManager_; }
228
229 /*!
230 * \name Volume terms
231 */
232 // \{
233
234 /*!
235 * \brief Evaluates the initial value for a control volume.
236 *
237 * \param globalPos The global position
238 */
239 2880182 PrimaryVariables initialAtPos(const GlobalPosition &globalPos) const
240 {
241 2880182 FluidState fluidState;
242 2880182 updateFluidStateForBC_(fluidState, refPressure());
243
244 2880182 const Scalar density = FluidSystem::density(fluidState, 0);
245
246 2880182 PrimaryVariables values(0.0);
247 2880182 values[Indices::pressureIdx] = refPressure() + density*this->gravity()[1]*(globalPos[1] - this->gridGeometry().bBoxMin()[1]);
248 2880182 values[Indices::conti0EqIdx + 1] = refMoleFrac();
249 2880182 values[Indices::velocityXIdx] = xVelocity_(globalPos);
250
251 #if NONISOTHERMAL
252 1584172 values[Indices::temperatureIdx] = refTemperature();
253 #endif
254
255 2880182 return values;
256 }
257
258 //! Returns the reference velocity.
259 3074905 const Scalar refVelocity() const
260 3074905 { return refVelocity_ ;}
261
262 //! Returns the reference pressure.
263 5760364 const Scalar refPressure() const
264 2880182 { return refPressure_; }
265
266 //! Returns the reference mole fraction.
267 9104093 const Scalar refMoleFrac() const
268 74101 { return refMoleFrac_; }
269
270 //! Returns the reference temperature.
271 4659077 const Scalar refTemperature() const
272 4659077 { return refTemperature_; }
273
274
275 2 void setTimeLoop(TimeLoopPtr timeLoop)
276
1/2
✓ Branch 1 taken 2 times.
✗ Branch 2 not taken.
2 { timeLoop_ = timeLoop; }
277
278 Scalar time() const
279 { return timeLoop_->time(); }
280
281 /*!
282 * \brief Returns the intrinsic permeability of required as input parameter
283 * for the Beavers-Joseph-Saffman boundary condition.
284 */
285 142570 Scalar permeability(const Element& element, const SubControlVolumeFace& scvf) const
286 {
287 142570 return couplingManager().couplingData().darcyPermeability(element, scvf);
288 }
289
290 /*!
291 * \brief Returns the alpha value required as input parameter for the
292 * Beavers-Joseph-Saffman boundary condition.
293 */
294
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 142570 times.
142570 Scalar alphaBJ(const SubControlVolumeFace& scvf) const
295 {
296
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 142570 times.
142570 return couplingManager().problem(CouplingManager::darcyIdx).spatialParams().beaversJosephCoeffAtPos(scvf.center());
297 }
298
299 // \}
300
301 private:
302
2/2
✓ Branch 0 taken 507113 times.
✓ Branch 1 taken 904255 times.
1411368 bool onLeftBoundary_(const GlobalPosition &globalPos) const
303
2/2
✓ Branch 0 taken 507113 times.
✓ Branch 1 taken 904255 times.
1411368 { return globalPos[0] < this->gridGeometry().bBoxMin()[0] + eps_; }
304
305
2/2
✓ Branch 0 taken 575807 times.
✓ Branch 1 taken 1078115 times.
1653922 bool onRightBoundary_(const GlobalPosition &globalPos) const
306
2/2
✓ Branch 0 taken 575807 times.
✓ Branch 1 taken 1078115 times.
1653922 { return globalPos[0] > this->gridGeometry().bBoxMax()[0] - eps_; }
307
308 bool onLowerBoundary_(const GlobalPosition &globalPos) const
309 { return globalPos[1] < this->gridGeometry().bBoxMin()[1] + eps_; }
310
311
2/2
✓ Branch 0 taken 1411368 times.
✓ Branch 1 taken 242554 times.
1653922 bool onUpperBoundary_(const GlobalPosition &globalPos) const
312
2/2
✓ Branch 0 taken 1411368 times.
✓ Branch 1 taken 242554 times.
1653922 { return globalPos[1] > this->gridGeometry().bBoxMax()[1] - eps_; }
313
314 //! Updates the fluid state to obtain required quantities for IC/BC
315 3074905 void updateFluidStateForBC_(FluidState& fluidState, const Scalar pressure) const
316 {
317 3074905 fluidState.setTemperature(refTemperature());
318 3074905 fluidState.setPressure(0, pressure);
319 3074905 fluidState.setSaturation(0, 1.0);
320 3074905 fluidState.setMoleFraction(0, 1, refMoleFrac());
321 3074905 fluidState.setMoleFraction(0, 0, 1.0 - refMoleFrac());
322
323 typename FluidSystem::ParameterCache paramCache;
324 3074905 paramCache.updatePhase(fluidState, 0);
325
326 3074905 const Scalar density = FluidSystem::density(fluidState, paramCache, 0);
327 3074905 fluidState.setDensity(0, density);
328
329 3074905 const Scalar molarDensity = FluidSystem::molarDensity(fluidState, paramCache, 0);
330 3074905 fluidState.setMolarDensity(0, molarDensity);
331
332 3074905 const Scalar enthalpy = FluidSystem::enthalpy(fluidState, paramCache, 0);
333 3074905 fluidState.setEnthalpy(0, enthalpy);
334 3074905 }
335
336 //! Set the profile of the inflow velocity (horizontal direction).
337 3074905 const Scalar xVelocity_(const GlobalPosition &globalPos) const
338 {
339 3074905 const Scalar vmax = refVelocity();
340
2/2
✓ Branch 0 taken 74101 times.
✓ Branch 1 taken 120622 times.
194723 return 4 * vmax * (globalPos[1] - this->gridGeometry().bBoxMin()[1]) * (this->gridGeometry().bBoxMax()[1] - globalPos[1])
341 3074905 / (height_() * height_());
342 }
343
344 // the height of the free-flow domain
345 3074905 const Scalar height_() const
346
2/2
✓ Branch 0 taken 74101 times.
✓ Branch 1 taken 120622 times.
194723 { return this->gridGeometry().bBoxMax()[1] - this->gridGeometry().bBoxMin()[1]; }
347
348 Scalar eps_;
349
350 Scalar refVelocity_;
351 Scalar refPressure_;
352 Scalar refMoleFrac_;
353 Scalar refTemperature_;
354 std::string problemName_;
355 TimeLoopPtr timeLoop_;
356
357 std::shared_ptr<CouplingManager> couplingManager_;
358
359 DiffusionCoefficientAveragingType diffCoeffAvgType_;
360 };
361 } // end namespace Dumux
362
363 #endif
364