Line | Branch | Exec | Source |
---|---|---|---|
1 | // -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- | ||
2 | // vi: set et ts=4 sw=4 sts=4: | ||
3 | // | ||
4 | // SPDX-FileCopyrightInfo: Copyright © DuMux Project contributors, see AUTHORS.md in root folder | ||
5 | // SPDX-License-Identifier: GPL-3.0-or-later | ||
6 | // | ||
7 | |||
8 | #ifndef DUMUX_TRACER_TEST_PROBLEM_HH | ||
9 | #define DUMUX_TRACER_TEST_PROBLEM_HH | ||
10 | |||
11 | // ## Initial and boundary conditions (`problem_tracer.hh`) | ||
12 | // | ||
13 | // This file contains the __problem class__ which defines the initial and boundary | ||
14 | // conditions for the tracer transport simulation. | ||
15 | // | ||
16 | // [[content]] | ||
17 | // | ||
18 | // ### Include files | ||
19 | // Include the `PorousMediumFlowProblem` class, the base | ||
20 | // class from which we will derive. | ||
21 | #include <dumux/porousmediumflow/problem.hh> | ||
22 | // Include the `BoundaryTypes` class which specifies the boundary types set in this problem. | ||
23 | #include <dumux/common/boundarytypes.hh> | ||
24 | // Include the `NumEqVector` class which specifies a field vector with size number of equations in this problem. | ||
25 | #include <dumux/common/numeqvector.hh> | ||
26 | |||
27 | // ### The problem class | ||
28 | // | ||
29 | // We enter the problem class where all necessary boundary conditions and initial | ||
30 | // conditions are set for our simulation. As we are solving a problem related to | ||
31 | // flow in porous media, we inherit from the base class `PorousMediumFlowProblem`. | ||
32 | // [[codeblock]] | ||
33 | namespace Dumux { | ||
34 | |||
35 | template <class TypeTag> | ||
36 | 1 | class TracerTestProblem : public PorousMediumFlowProblem<TypeTag> | |
37 | { | ||
38 | // A few convenience aliases used throughout this class. | ||
39 | using ParentType = PorousMediumFlowProblem<TypeTag>; | ||
40 | using Scalar = GetPropType<TypeTag, Properties::Scalar>; | ||
41 | using Indices = typename GetPropType<TypeTag, Properties::ModelTraits>::Indices; | ||
42 | using GridView = typename GetPropType<TypeTag, Properties::GridGeometry>::GridView; | ||
43 | using GridGeometry = GetPropType<TypeTag, Properties::GridGeometry>; | ||
44 | using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>; | ||
45 | using BoundaryTypes = Dumux::BoundaryTypes<PrimaryVariables::size()>; | ||
46 | using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>; | ||
47 | using SpatialParams = GetPropType<TypeTag, Properties::SpatialParams>; | ||
48 | using Element = typename GridGeometry::GridView::template Codim<0>::Entity; | ||
49 | using GlobalPosition = typename Element::Geometry::GlobalCoordinate; | ||
50 | using NumEqVector = Dumux::NumEqVector<PrimaryVariables>; | ||
51 | using GridVariables = GetPropType<TypeTag, Properties::GridVariables>; | ||
52 | using ElementVolumeVariables = typename GridVariables::GridVolumeVariables::LocalView; | ||
53 | using ElementFluxVariablesCache = typename GridVariables::GridFluxVariablesCache::LocalView; | ||
54 | using FVElementGeometry = typename GetPropType<TypeTag, Properties::GridGeometry>::LocalView; | ||
55 | using SubControlVolumeFace = typename FVElementGeometry::SubControlVolumeFace; | ||
56 | // We create a convenience bool stating whether mole or mass fractions are used | ||
57 | static constexpr bool useMoles = getPropValue<TypeTag, Properties::UseMoles>(); | ||
58 | // We create additional convenience integers to make dimWorld and numComponents available in the problem | ||
59 | static constexpr int dimWorld = GridView::dimensionworld; | ||
60 | static const int numComponents = FluidSystem::numComponents; | ||
61 | |||
62 | public: | ||
63 | // This is the constructor of our problem class: | ||
64 | 1 | TracerTestProblem(std::shared_ptr<const GridGeometry> gridGeometry) | |
65 |
5/14✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 1 times.
✗ Branch 5 not taken.
✓ Branch 8 taken 1 times.
✗ Branch 9 not taken.
✓ Branch 10 taken 1 times.
✗ Branch 11 not taken.
✗ Branch 12 not taken.
✓ Branch 13 taken 1 times.
✗ Branch 15 not taken.
✗ Branch 16 not taken.
✗ Branch 17 not taken.
✗ Branch 18 not taken.
|
3 | : ParentType(gridGeometry) |
66 | { | ||
67 | // We print to the terminal whether mole or mass fractions are used | ||
68 | if(useMoles) | ||
69 | std::cout<<"problem uses mole fractions" << '\n'; | ||
70 | else | ||
71 |
1/2✓ Branch 2 taken 1 times.
✗ Branch 3 not taken.
|
2 | std::cout<<"problem uses mass fractions" << '\n'; |
72 | 1 | } | |
73 | // [[/codeblock]] | ||
74 | |||
75 | // #### Boundary conditions | ||
76 | // | ||
77 | // We define the __type of boundary conditions__ depending on the location. | ||
78 | // All boundaries are set to a neumann-type flow boundary condition. | ||
79 | // [[codeblock]] | ||
80 | ✗ | BoundaryTypes boundaryTypesAtPos(const GlobalPosition& globalPos) const | |
81 | { | ||
82 |
4/8✗ Branch 0 not taken.
✓ Branch 1 taken 2200 times.
✓ Branch 2 taken 2200 times.
✗ Branch 3 not taken.
✗ Branch 4 not taken.
✓ Branch 5 taken 100000 times.
✗ Branch 6 not taken.
✓ Branch 7 taken 202400 times.
|
306800 | BoundaryTypes values; |
83 |
4/8✗ Branch 0 not taken.
✓ Branch 1 taken 2200 times.
✓ Branch 2 taken 2200 times.
✗ Branch 3 not taken.
✗ Branch 4 not taken.
✓ Branch 5 taken 100000 times.
✗ Branch 6 not taken.
✓ Branch 7 taken 202400 times.
|
306800 | values.setAllNeumann(); |
84 | ✗ | return values; | |
85 | } | ||
86 | // [[/codeblock]] | ||
87 | |||
88 | // In the following function we implement the __Neumann boundary conditions__. | ||
89 | // Here, we define an outflow boundary on the top of the domain and prescribe zero-flux | ||
90 | // Neumann boundary conditions on all other boundaries. | ||
91 | // [[codeblock]] | ||
92 | 100000 | NumEqVector neumann(const Element& element, | |
93 | const FVElementGeometry& fvGeometry, | ||
94 | const ElementVolumeVariables& elemVolVars, | ||
95 | const ElementFluxVariablesCache& elemFluxVarsCache, | ||
96 | const SubControlVolumeFace& scvf) const | ||
97 | { | ||
98 | 100000 | NumEqVector values(0.0); | |
99 | 200000 | const auto& volVars = elemVolVars[scvf.insideScvIdx()]; | |
100 |
2/2✓ Branch 0 taken 25000 times.
✓ Branch 1 taken 75000 times.
|
100000 | const auto& globalPos = scvf.center(); |
101 | |||
102 | // This is the outflow boundary, where tracer is transported by advection with the given flux field. | ||
103 |
10/10✓ Branch 0 taken 25000 times.
✓ Branch 1 taken 75000 times.
✓ Branch 2 taken 25000 times.
✓ Branch 3 taken 75000 times.
✓ Branch 4 taken 25000 times.
✓ Branch 5 taken 75000 times.
✓ Branch 6 taken 25000 times.
✓ Branch 7 taken 75000 times.
✓ Branch 8 taken 25000 times.
✓ Branch 9 taken 75000 times.
|
500000 | if (globalPos[dimWorld-1] > this->gridGeometry().bBoxMax()[dimWorld-1] - eps_) |
104 | { | ||
105 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 25000 times.
|
25000 | values = this->spatialParams().volumeFlux(element, fvGeometry, elemVolVars, scvf) |
106 |
2/4✗ Branch 0 not taken.
✓ Branch 1 taken 25000 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 25000 times.
|
50000 | * volVars.massFraction(0, 0) * volVars.density(0) |
107 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 25000 times.
|
25000 | / scvf.area(); |
108 |
2/4✗ Branch 0 not taken.
✓ Branch 1 taken 25000 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 25000 times.
|
50000 | assert(values>=0.0 && "Volume flux at outflow boundary is expected to have a positive sign"); |
109 | } | ||
110 | |||
111 | // Prescribe zero-flux Neumann boundary conditions elsewhere | ||
112 | else | ||
113 | values = 0.0; | ||
114 | |||
115 | 100000 | return values; | |
116 | } | ||
117 | // [[/codeblock]] | ||
118 | |||
119 | // #### Initial conditions | ||
120 | // | ||
121 | // We specify the initial conditions for the primary variable (tracer mass fraction) depending | ||
122 | // on the location. Here, we set zero mass fractions everywhere in the domain except for a strip | ||
123 | // at the bottom of the domain where we set an initial mole fraction of $`10^{-9}`$. | ||
124 | // [[codeblock]] | ||
125 | ✗ | PrimaryVariables initialAtPos(const GlobalPosition& globalPos) const | |
126 | { | ||
127 | // initialize the mole fraction to zero | ||
128 | ✗ | PrimaryVariables initialValues(0.0); | |
129 | |||
130 | // The initial contamination is located at the bottom of the domain | ||
131 | ✗ | if (globalPos[1] < 0.1 + eps_) | |
132 | { | ||
133 | // We chose a mole fraction of 1e-9, but in case the mass fractions | ||
134 | // are used by the model, we have to convert this value: | ||
135 | if (useMoles) | ||
136 | initialValues = 1e-9; | ||
137 | else | ||
138 | ✗ | initialValues = 1e-9*FluidSystem::molarMass(0) | |
139 | ✗ | /this->spatialParams().fluidMolarMassAtPos(globalPos); | |
140 | } | ||
141 | |||
142 | ✗ | return initialValues; | |
143 | } | ||
144 | // [[/codeblock]] | ||
145 | // | ||
146 | // The remainder of the class contains an epsilon value used for floating point comparisons. | ||
147 | // [[codeblock]] | ||
148 | private: | ||
149 | // We assign a private global variable for the epsilon: | ||
150 | static constexpr Scalar eps_ = 1e-6; | ||
151 | |||
152 | }; // end class definition TracerTestProblem | ||
153 | } // end namespace Dumux | ||
154 | // [[/codeblock]] | ||
155 | // [[/content]] | ||
156 | #endif | ||
157 |