Line | Branch | Exec | Source |
---|---|---|---|
1 | // -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- | ||
2 | // vi: set et ts=4 sw=4 sts=4: | ||
3 | // | ||
4 | // SPDX-FileCopyrightInfo: Copyright © DuMux Project contributors, see AUTHORS.md in root folder | ||
5 | // SPDX-License-Identifier: GPL-3.0-or-later | ||
6 | // | ||
7 | /** | ||
8 | * \file | ||
9 | * \ingroup OnePNCTests | ||
10 | * \brief Definition of a problem for a 1p3c problem: | ||
11 | * Component transport of N2, CO2 and H2 using the Maxwell-Stefan diffusion law. | ||
12 | */ | ||
13 | |||
14 | #ifndef DUMUX_1P3C_TEST_PROBLEM_PROPERTIES_HH | ||
15 | #define DUMUX_1P3C_TEST_PROBLEM_PROPERTIES_HH | ||
16 | |||
17 | #if HAVE_DUNE_UGGRID | ||
18 | #include <dune/grid/uggrid.hh> | ||
19 | #endif | ||
20 | #include <dune/grid/yaspgrid.hh> | ||
21 | |||
22 | #include <dumux/discretization/cctpfa.hh> | ||
23 | #include <dumux/discretization/box.hh> | ||
24 | #include <dumux/discretization/evalsolution.hh> | ||
25 | #include <dumux/discretization/evalgradients.hh> | ||
26 | #include <dumux/porousmediumflow/1pnc/model.hh> | ||
27 | |||
28 | #include <dumux/material/idealgas.hh> | ||
29 | #include <dumux/material/fluidsystems/base.hh> | ||
30 | |||
31 | #include "problem.hh" | ||
32 | #include "../1p2c/spatialparams.hh" | ||
33 | |||
34 | |||
35 | #include <dumux/flux/maxwellstefanslaw.hh> | ||
36 | |||
37 | namespace Dumux::Properties { | ||
38 | |||
39 | // Create new type tags | ||
40 | namespace TTag { | ||
41 | struct MaxwellStefanOnePThreeCTest { using InheritsFrom = std::tuple<OnePNC>; }; | ||
42 | struct MaxwellStefanOnePThreeCTestBox { using InheritsFrom = std::tuple<MaxwellStefanOnePThreeCTest, BoxModel>; }; | ||
43 | struct MaxwellStefanOnePThreeCTestCCTpfa { using InheritsFrom = std::tuple<MaxwellStefanOnePThreeCTest, CCTpfaModel>; }; | ||
44 | } // end namespace TTag | ||
45 | |||
46 | // Set the grid type | ||
47 | #if HAVE_DUNE_UGGRID | ||
48 | template<class TypeTag> | ||
49 | struct Grid<TypeTag, TTag::MaxwellStefanOnePThreeCTest> { using type = Dune::UGGrid<2>; }; | ||
50 | #else | ||
51 | template<class TypeTag> | ||
52 | struct Grid<TypeTag, TTag::MaxwellStefanOnePThreeCTest> { using type = Dune::YaspGrid<2>; }; | ||
53 | #endif | ||
54 | |||
55 | // Set the problem property | ||
56 | template<class TypeTag> | ||
57 | struct Problem<TypeTag, TTag::MaxwellStefanOnePThreeCTest> { using type = MaxwellStefanOnePThreeCTestProblem<TypeTag>; }; | ||
58 | |||
59 | /*! | ||
60 | * \ingroup OnePNCTests | ||
61 | * \brief A simple fluid system with three components for testing the multi-component diffusion with the Maxwell-Stefan formulation. | ||
62 | */ | ||
63 | template<class TypeTag> | ||
64 | class H2N2CO2FluidSystem | ||
65 | : public FluidSystems::Base<GetPropType<TypeTag, Properties::Scalar>, H2N2CO2FluidSystem<TypeTag>> | ||
66 | |||
67 | { | ||
68 | using Scalar = GetPropType<TypeTag, Properties::Scalar>; | ||
69 | using ThisType = H2N2CO2FluidSystem<TypeTag>; | ||
70 | using Base = FluidSystems::Base<Scalar, ThisType>; | ||
71 | using IdealGas = Dumux::IdealGas<Scalar>; | ||
72 | |||
73 | public: | ||
74 | //! The number of phases | ||
75 | static constexpr int numPhases = 1; | ||
76 | static constexpr int numComponents = 3; | ||
77 | |||
78 | static constexpr int H2Idx = 0; //first major component | ||
79 | static constexpr int N2Idx = 1; //second major component | ||
80 | static constexpr int CO2Idx = 2; //secondary component | ||
81 | |||
82 | //! Human readable component name (index compIdx) (for vtk output) | ||
83 | 12 | static std::string componentName(int compIdx) | |
84 |
2/6✓ Branch 2 taken 12 times.
✗ Branch 3 not taken.
✗ Branch 4 not taken.
✓ Branch 5 taken 12 times.
✗ Branch 6 not taken.
✗ Branch 7 not taken.
|
12 | { return "MaxwellStefan_" + std::to_string(compIdx); } |
85 | |||
86 | //! Human readable phase name (index phaseIdx) (for velocity vtk output) | ||
87 | ✗ | static std::string phaseName(int phaseIdx = 0) | |
88 |
0/4✗ Branch 3 not taken.
✗ Branch 4 not taken.
✗ Branch 6 not taken.
✗ Branch 7 not taken.
|
48 | { return "Gas"; } |
89 | |||
90 | //! Molar mass in kg/mol of the component with index compIdx | ||
91 |
1/2✓ Branch 0 taken 18329740 times.
✗ Branch 1 not taken.
|
18329740 | static Scalar molarMass(unsigned int compIdx) |
92 | { | ||
93 | switch (compIdx) | ||
94 | { | ||
95 | case H2Idx: return 0.002; | ||
96 | case N2Idx: return 0.028; | ||
97 | case CO2Idx:return 0.044; | ||
98 | } | ||
99 | ✗ | DUNE_THROW(Dune::InvalidStateException, "Invalid component index " << compIdx);; | |
100 | } | ||
101 | |||
102 | using Base::binaryDiffusionCoefficient; | ||
103 | /*! | ||
104 | * \brief Given a phase's composition, temperature and pressure, | ||
105 | * returns the binary diffusion coefficient \f$\mathrm{[m^2/s]}\f$ for components | ||
106 | * \f$i\f$ and \f$j\f$ in this phase. | ||
107 | * | ||
108 | * \param fluidState An arbitrary fluid state | ||
109 | * \param phaseIdx The index of the fluid phase to consider | ||
110 | * \param compIIdx The index of the first component to consider | ||
111 | * \param compJIdx The index of the second component to consider | ||
112 | */ | ||
113 | template <class FluidState> | ||
114 | 1170912 | static Scalar binaryDiffusionCoefficient(const FluidState &fluidState, | |
115 | int phaseIdx, | ||
116 | int compIIdx, | ||
117 | int compJIdx) | ||
118 | { | ||
119 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1170912 times.
|
1170912 | if (compIIdx > compJIdx) |
120 | { | ||
121 | using std::swap; | ||
122 | ✗ | swap(compIIdx, compJIdx); | |
123 | } | ||
124 | |||
125 |
4/4✓ Branch 0 taken 780608 times.
✓ Branch 1 taken 390304 times.
✓ Branch 2 taken 390304 times.
✓ Branch 3 taken 390304 times.
|
1170912 | if (compIIdx == H2Idx && compJIdx == N2Idx) |
126 | return 83.3e-6; | ||
127 |
3/4✓ Branch 0 taken 390304 times.
✓ Branch 1 taken 390304 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 390304 times.
|
780608 | if (compIIdx == H2Idx && compJIdx == CO2Idx) |
128 | return 68.0e-6; | ||
129 |
2/4✓ Branch 0 taken 390304 times.
✗ Branch 1 not taken.
✗ Branch 2 not taken.
✓ Branch 3 taken 390304 times.
|
390304 | if (compIIdx == N2Idx && compJIdx == CO2Idx) |
130 | return 16.8e-6; | ||
131 | ✗ | DUNE_THROW(Dune::InvalidStateException, | |
132 | "Binary diffusion coefficient of components " | ||
133 | << compIIdx << " and " << compJIdx << " is undefined!\n"); | ||
134 | } | ||
135 | using Base::density; | ||
136 | /*! | ||
137 | * \brief Given a phase's composition, temperature, pressure, and | ||
138 | * the partial pressures of all components, returns its | ||
139 | * density \f$\mathrm{[kg/m^3]}\f$. | ||
140 | * | ||
141 | * \param phaseIdx index of the phase | ||
142 | * \param fluidState the fluid state | ||
143 | */ | ||
144 | template <class FluidState> | ||
145 | static Scalar density(const FluidState &fluidState, | ||
146 | const int phaseIdx) | ||
147 | { | ||
148 | 780608 | Scalar T = fluidState.temperature(phaseIdx); | |
149 | 780608 | Scalar p = fluidState.pressure(phaseIdx); | |
150 | 1170912 | return IdealGas::molarDensity(T, p) * fluidState.averageMolarMass(0); | |
151 | } | ||
152 | |||
153 | using Base::viscosity; | ||
154 | /*! | ||
155 | * \brief Calculates the dynamic viscosity of a fluid phase \f$\mathrm{[Pa*s]}\f$ | ||
156 | * | ||
157 | * \param fluidState An arbitrary fluid state | ||
158 | * \param phaseIdx The index of the fluid phase to consider | ||
159 | */ | ||
160 | template <class FluidState> | ||
161 | ✗ | static Scalar viscosity(const FluidState &fluidState, | |
162 | int phaseIdx) | ||
163 | { | ||
164 | ✗ | return 1e-6; | |
165 | } | ||
166 | |||
167 | using Base::molarDensity; | ||
168 | /*! | ||
169 | * \brief The molar density \f$\rho_{mol,\alpha}\f$ | ||
170 | * of a fluid phase \f$\alpha\f$ in \f$\mathrm{[mol/m^3]}\f$ | ||
171 | * | ||
172 | * The molar density for the simple relation is defined by the | ||
173 | * mass density \f$\rho_\alpha\f$ and the molar mass of the main component \f$M_\kappa\f$: | ||
174 | * | ||
175 | * \f[\rho_{mol,\alpha} = \frac{\rho_\alpha}{M_\kappa} \;.\f] | ||
176 | */ | ||
177 | template <class FluidState> | ||
178 | static Scalar molarDensity(const FluidState &fluidState, int phaseIdx) | ||
179 | { | ||
180 | 780608 | Scalar T = fluidState.temperature(phaseIdx); | |
181 | 780608 | Scalar p = fluidState.pressure(phaseIdx); | |
182 | 390304 | return IdealGas::molarDensity(T,p); | |
183 | } | ||
184 | }; | ||
185 | |||
186 | // Set fluid configuration | ||
187 | template<class TypeTag> | ||
188 | struct FluidSystem<TypeTag, TTag::MaxwellStefanOnePThreeCTest> | ||
189 | {using type = H2N2CO2FluidSystem<TypeTag>; }; | ||
190 | |||
191 | // Set the spatial parameters | ||
192 | template<class TypeTag> | ||
193 | struct SpatialParams<TypeTag, TTag::MaxwellStefanOnePThreeCTest> | ||
194 | { | ||
195 | using GridGeometry = GetPropType<TypeTag, Properties::GridGeometry>; | ||
196 | using Scalar = GetPropType<TypeTag, Properties::Scalar>; | ||
197 | using type = OnePNCTestSpatialParams<GridGeometry, Scalar>; | ||
198 | }; | ||
199 | |||
200 | // Define whether mole(true) or mass (false) fractions are used | ||
201 | template<class TypeTag> | ||
202 | struct UseMoles<TypeTag, TTag::MaxwellStefanOnePThreeCTest> { static constexpr bool value = true; }; | ||
203 | |||
204 | //! Here we set FicksLaw or MaxwellStefansLaw | ||
205 | template<class TypeTag> | ||
206 | struct MolecularDiffusionType<TypeTag, TTag::MaxwellStefanOnePThreeCTest> { using type = MaxwellStefansLaw<TypeTag>; }; | ||
207 | |||
208 | } // end namespace Properties | ||
209 | |||
210 | #endif | ||
211 |