Line | Branch | Exec | Source |
---|---|---|---|
1 | // -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- | ||
2 | // vi: set et ts=4 sw=4 sts=4: | ||
3 | // | ||
4 | // SPDX-FileCopyrightInfo: Copyright © DuMux Project contributors, see AUTHORS.md in root folder | ||
5 | // SPDX-License-Identifier: GPL-3.0-or-later | ||
6 | // | ||
7 | /*! | ||
8 | * \file | ||
9 | * \ingroup OnePNCMinTests | ||
10 | * \brief Class for the evaluation of the reaction rate of Calciumoxide to Halciumhydroxide | ||
11 | * | ||
12 | * It contains simple and advanced reaction kinetics according to Nagel et al. (2014) \cite nagel2014. | ||
13 | */ | ||
14 | |||
15 | #ifndef DUMUX_THERMOCHEM_REACTION_HH | ||
16 | #define DUMUX_THERMOCHEM_REACTION_HH | ||
17 | |||
18 | namespace Dumux { | ||
19 | |||
20 | /*! | ||
21 | * \ingroup OnePNCMinTests | ||
22 | * \brief Class for the evaluation of the reaction rate of Calciumoxide to Halciumhydroxide | ||
23 | * | ||
24 | * It contains simple and advanced reaction kinetics according to Nagel et al. (2014) \cite nagel2014. | ||
25 | */ | ||
26 | class ThermoChemReaction { | ||
27 | |||
28 | public: | ||
29 | /*! | ||
30 | * \brief Evaluates the reaction kinetics (see Nagel et al. 2014 \cite nagel2014). | ||
31 | */ | ||
32 | template<class VolumeVariables> | ||
33 | typename VolumeVariables::PrimaryVariables::value_type | ||
34 | 68416 | thermoChemReaction(const VolumeVariables &volVars) const | |
35 | { | ||
36 | using FluidSystem = typename VolumeVariables::FluidSystem; | ||
37 | using SolidSystem = typename VolumeVariables::SolidSystem; | ||
38 | |||
39 | static constexpr auto H2OIdx = FluidSystem::compIdx(FluidSystem::MultiPhaseFluidSystem::H2OIdx); | ||
40 | static constexpr int cPhaseIdx = SolidSystem::comp0Idx; | ||
41 | static constexpr int hPhaseIdx = SolidSystem::comp1Idx; | ||
42 | |||
43 | using Scalar = typename VolumeVariables::PrimaryVariables::value_type; | ||
44 | |||
45 | // calculate the equilibrium temperature Teq | ||
46 |
1/2✓ Branch 0 taken 68416 times.
✗ Branch 1 not taken.
|
68416 | Scalar T= volVars.temperature(); |
47 | 68416 | Scalar Teq = 0; | |
48 | |||
49 | 68416 | Scalar moleFractionVapor = 1e-3; | |
50 | |||
51 |
2/4✓ Branch 0 taken 68416 times.
✗ Branch 1 not taken.
✓ Branch 2 taken 68416 times.
✗ Branch 3 not taken.
|
136832 | if(volVars.moleFraction(0, H2OIdx) > 1e-3) |
52 | 136832 | moleFractionVapor = volVars.moleFraction(0, H2OIdx); | |
53 | |||
54 |
2/4✗ Branch 0 not taken.
✓ Branch 1 taken 68416 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 68416 times.
|
136832 | if(volVars.moleFraction(0, H2OIdx) >= 1.0) moleFractionVapor = 1; |
55 | |||
56 | 68416 | Scalar pV = volVars.pressure(0) *moleFractionVapor; | |
57 | 68416 | Scalar vaporPressure = pV*1.0e-5; | |
58 | 68416 | Scalar pFactor = log(vaporPressure); | |
59 | |||
60 | 68416 | Teq = -12845; | |
61 | 68416 | Teq /= (pFactor - 16.508); //the equilibrium temperature | |
62 | |||
63 | 136832 | Scalar realSolidDensityAverage = (volVars.solidVolumeFraction(hPhaseIdx)*volVars.solidComponentDensity(hPhaseIdx) | |
64 | 136832 | + volVars.solidVolumeFraction(cPhaseIdx)*volVars.solidComponentDensity(cPhaseIdx)) | |
65 | / (volVars.solidVolumeFraction(hPhaseIdx) | ||
66 | 136832 | + volVars.solidVolumeFraction(cPhaseIdx)); | |
67 | |||
68 |
2/2✓ Branch 1 taken 8 times.
✓ Branch 2 taken 68408 times.
|
68416 | if(realSolidDensityAverage <= volVars.solidComponentDensity(cPhaseIdx)) |
69 | { | ||
70 | 16 | realSolidDensityAverage = volVars.solidComponentDensity(cPhaseIdx); | |
71 | } | ||
72 | |||
73 |
1/2✗ Branch 1 not taken.
✓ Branch 2 taken 68416 times.
|
68416 | if(realSolidDensityAverage >= volVars.solidComponentDensity(hPhaseIdx)) |
74 | { | ||
75 | ✗ | realSolidDensityAverage = volVars.solidComponentDensity(hPhaseIdx); | |
76 | } | ||
77 | |||
78 | 68416 | Scalar qMass = 0.0; | |
79 | |||
80 | // discharge or hydration | ||
81 |
1/2✓ Branch 0 taken 68416 times.
✗ Branch 1 not taken.
|
68416 | if (T < Teq){ |
82 | 68416 | Scalar dXH_dt1 = 0.0; | |
83 | 68416 | Scalar dXH_dt2 = 0.0; | |
84 | |||
85 | 68416 | Scalar xH = (realSolidDensityAverage-volVars.solidComponentDensity(cPhaseIdx))/(volVars.solidComponentDensity(hPhaseIdx)- volVars.solidComponentDensity(cPhaseIdx)); | |
86 | |||
87 |
2/2✓ Branch 0 taken 520 times.
✓ Branch 1 taken 67896 times.
|
68416 | if(xH < 1.0e-5) {xH = 1.0e-5; } |
88 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 68416 times.
|
68416 | if(xH >=1 ) {xH = 1 - 1e-5; } |
89 | |||
90 | 68416 | Scalar R = 8.314 ; // [J/molK] | |
91 | 68416 | Scalar peq = 1e5*exp( (-12845)/T + 16.508); | |
92 | |||
93 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 68416 times.
|
68416 | if(peq >= pV) {peq=899954;} |
94 | |||
95 | 68416 | Scalar dXH_dt = 0; | |
96 | |||
97 | // reaction kinetics for T-Teq > 50 K | ||
98 |
1/2✓ Branch 0 taken 68416 times.
✗ Branch 1 not taken.
|
68416 | if(Teq -T > 50.25){ |
99 | |||
100 | 68416 | Scalar A =exp(-8.9486e4/(R*T)); | |
101 | 68416 | Scalar B = pow(((pV/peq)-1),0.83); | |
102 | 68416 | Scalar D = 1-xH; | |
103 | 68416 | Scalar C = pow((-log(D)),0.666); | |
104 | |||
105 | 68416 | dXH_dt = 1.3945e4*A *B*3*D*C; | |
106 | |||
107 | } | ||
108 | |||
109 | // reaction kinetics for T-Teq < 50 K | ||
110 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 68416 times.
|
68416 | if(Teq -T < 49.75){ |
111 | |||
112 | ✗ | Scalar E = exp(5.3332e4/T); | |
113 | ✗ | Scalar F = pow((pV*1e-5),6); | |
114 | ✗ | Scalar G = (1-xH); | |
115 | |||
116 | ✗ | dXH_dt = 1.004e-34 *E * F * G; | |
117 | |||
118 | } | ||
119 | |||
120 | // linearization of the point of discontinuity | ||
121 |
1/4✗ Branch 0 not taken.
✓ Branch 1 taken 68416 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
|
68416 | if(Teq-T <=50.25 && Teq-T >=49.75){ |
122 | |||
123 | ✗ | Scalar op = ((Teq-T)- 49.75)*2; | |
124 | ✗ | Scalar A =exp(-8.9486e4/(R*T)); | |
125 | ✗ | Scalar B = pow(((pV/peq)-1),0.83); | |
126 | ✗ | Scalar D = 1-xH; | |
127 | ✗ | Scalar C = pow((-log(D)),0.666); | |
128 | ✗ | dXH_dt1 = 1.3945e4*A *B*3*D*C; | |
129 | |||
130 | ✗ | Scalar E = exp(5.3332e4/T); | |
131 | ✗ | Scalar F = pow((pV*1e-5),6); | |
132 | ✗ | Scalar G = (1-xH); | |
133 | ✗ | dXH_dt2 = 1.004e-34 *E * F * G; | |
134 | |||
135 | ✗ | dXH_dt = dXH_dt1*op + dXH_dt2*(1-op); | |
136 | } | ||
137 | |||
138 | // no reaction at equilibrium | ||
139 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 68416 times.
|
68416 | if(Teq -T <= 0) |
140 | ✗ | dXH_dt = 0; | |
141 | 68416 | Scalar deltaRhoS = volVars.solidComponentDensity(hPhaseIdx) - volVars.solidComponentDensity(cPhaseIdx); | |
142 | 68416 | qMass = dXH_dt*deltaRhoS; | |
143 | } | ||
144 | |||
145 | 68416 | return qMass; | |
146 | } | ||
147 | |||
148 | |||
149 | /*! | ||
150 | * \brief Evaluates the simple chemical reaction kinetics (see Nagel et al. 2014) | ||
151 | */ | ||
152 | template<class VolumeVariables> | ||
153 | typename VolumeVariables::PrimaryVariables::value_type | ||
154 | thermoChemReactionSimple(const VolumeVariables &volVars) const | ||
155 | { | ||
156 | using FluidSystem = typename VolumeVariables::FluidSystem; | ||
157 | using SolidSystem = typename VolumeVariables::SolidSystem; | ||
158 | |||
159 | static constexpr auto H2OIdx = FluidSystem::compIdx(FluidSystem::MultiPhaseFluidSystem::H2OIdx); | ||
160 | static constexpr int cPhaseIdx = SolidSystem::comp0Idx; | ||
161 | static constexpr int hPhaseIdx = SolidSystem::comp1Idx; | ||
162 | |||
163 | using Scalar = typename VolumeVariables::PrimaryVariables::value_type; | ||
164 | |||
165 | // calculate the equilibrium temperature Teq | ||
166 | Scalar T= volVars.temperature(); | ||
167 | Scalar Teq = 0; | ||
168 | |||
169 | Scalar moleFractionVapor = 1e-3; | ||
170 | |||
171 | if(volVars.moleFraction(0, H2OIdx) > 1e-3) | ||
172 | moleFractionVapor = volVars.moleFraction(0, H2OIdx); | ||
173 | |||
174 | if(volVars.moleFraction(0, H2OIdx) >= 1.0) moleFractionVapor = 1; | ||
175 | |||
176 | Scalar pV = volVars.pressure(0) *moleFractionVapor; | ||
177 | Scalar vaporPressure = pV*1.0e-5; | ||
178 | Scalar pFactor = log(vaporPressure); | ||
179 | |||
180 | Teq = -12845; | ||
181 | Teq /= (pFactor - 16.508); //the equilibrium temperature | ||
182 | |||
183 | |||
184 | Scalar realSolidDensityAverage = (volVars.solidVolumeFraction(hPhaseIdx)*volVars.solidComponentDensity(hPhaseIdx) | ||
185 | + volVars.solidVolumeFraction(cPhaseIdx)*volVars.solidComponentDensity(cPhaseIdx)) | ||
186 | / (volVars.solidVolumeFraction(hPhaseIdx) | ||
187 | + volVars.solidVolumeFraction(cPhaseIdx)); | ||
188 | |||
189 | if(realSolidDensityAverage <= volVars.solidComponentDensity(cPhaseIdx)) | ||
190 | { | ||
191 | realSolidDensityAverage = volVars.solidComponentDensity(cPhaseIdx); | ||
192 | } | ||
193 | |||
194 | if(realSolidDensityAverage >= volVars.solidComponentDensity(hPhaseIdx)) | ||
195 | { | ||
196 | realSolidDensityAverage = volVars.solidComponentDensity(hPhaseIdx); | ||
197 | } | ||
198 | |||
199 | Scalar qMass = 0.0; | ||
200 | |||
201 | // discharge or hydration | ||
202 | if (T < Teq){ | ||
203 | Scalar massFracH2O_fPhase = volVars.massFraction(0, H2OIdx); | ||
204 | Scalar krh = 0.2; | ||
205 | |||
206 | Scalar rHydration = - massFracH2O_fPhase* (volVars.solidComponentDensity(hPhaseIdx)- realSolidDensityAverage) | ||
207 | * krh * (T-Teq)/ Teq; | ||
208 | |||
209 | qMass = rHydration; | ||
210 | } | ||
211 | |||
212 | // charge or hydration | ||
213 | else if(T > Teq){ | ||
214 | |||
215 | Scalar krd = 0.05; | ||
216 | |||
217 | Scalar rDehydration = -(volVars.solidComponentDensity(cPhaseIdx)- realSolidDensityAverage) | ||
218 | * krd * (Teq-T)/ Teq; | ||
219 | |||
220 | qMass = rDehydration; | ||
221 | } | ||
222 | |||
223 | if(Teq -T == 0) qMass = 0; | ||
224 | |||
225 | return qMass; | ||
226 | } | ||
227 | |||
228 | }; | ||
229 | |||
230 | } // end namespace Dumux | ||
231 | |||
232 | #endif | ||
233 |