Line | Branch | Exec | Source |
---|---|---|---|
1 | // -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- | ||
2 | // vi: set et ts=4 sw=4 sts=4: | ||
3 | // | ||
4 | // SPDX-FileCopyrightInfo: Copyright © DuMux Project contributors, see AUTHORS.md in root folder | ||
5 | // SPDX-License-Identifier: GPL-3.0-or-later | ||
6 | // | ||
7 | /*! | ||
8 | * \file | ||
9 | * \ingroup Components | ||
10 | * \brief A much simpler (and thus potentially less buggy) version of | ||
11 | * pure CO2. | ||
12 | */ | ||
13 | #ifndef DUMUX_SIMPLE_CO2_HH | ||
14 | #define DUMUX_SIMPLE_CO2_HH | ||
15 | |||
16 | #include <dune/common/stdstreams.hh> | ||
17 | |||
18 | #include <dumux/common/parameters.hh> | ||
19 | #include <dumux/material/idealgas.hh> | ||
20 | |||
21 | #include <cmath> | ||
22 | |||
23 | #include <dumux/material/components/base.hh> | ||
24 | #include <dumux/material/components/gas.hh> | ||
25 | #include <dumux/material/components/shomate.hh> | ||
26 | |||
27 | namespace Dumux::Components { | ||
28 | |||
29 | /*! | ||
30 | * \ingroup Components | ||
31 | * \brief A simple version of pure CO2 | ||
32 | * | ||
33 | * \tparam Scalar The type used for scalar values | ||
34 | */ | ||
35 | template <class Scalar> | ||
36 | class SimpleCO2 | ||
37 | : public Components::Base<Scalar, SimpleCO2<Scalar> > | ||
38 | , public Components::Gas<Scalar, SimpleCO2<Scalar> > | ||
39 | { | ||
40 | using IdealGas = Dumux::IdealGas<Scalar>; | ||
41 | using ShomateMethod = Dumux::ShomateMethod<Scalar, 2>; // two regions | ||
42 | |||
43 | public: | ||
44 | static const ShomateMethod shomateMethod; | ||
45 | |||
46 | /*! | ||
47 | * \brief A human readable name for the CO2. | ||
48 | */ | ||
49 | static std::string name() | ||
50 |
20/40✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 1 times.
✗ Branch 5 not taken.
✓ Branch 7 taken 1 times.
✗ Branch 8 not taken.
✓ Branch 10 taken 1 times.
✗ Branch 11 not taken.
✓ Branch 13 taken 1 times.
✗ Branch 14 not taken.
✓ Branch 16 taken 1 times.
✗ Branch 17 not taken.
✓ Branch 19 taken 1 times.
✗ Branch 20 not taken.
✓ Branch 22 taken 1 times.
✗ Branch 23 not taken.
✓ Branch 25 taken 1 times.
✗ Branch 26 not taken.
✓ Branch 28 taken 1 times.
✗ Branch 29 not taken.
✓ Branch 31 taken 1 times.
✗ Branch 32 not taken.
✓ Branch 34 taken 1 times.
✗ Branch 35 not taken.
✓ Branch 37 taken 1 times.
✗ Branch 38 not taken.
✓ Branch 40 taken 1 times.
✗ Branch 41 not taken.
✓ Branch 43 taken 1 times.
✗ Branch 44 not taken.
✓ Branch 46 taken 1 times.
✗ Branch 47 not taken.
✓ Branch 49 taken 1 times.
✗ Branch 50 not taken.
✓ Branch 52 taken 1 times.
✗ Branch 53 not taken.
✓ Branch 55 taken 1 times.
✗ Branch 56 not taken.
✓ Branch 58 taken 1 times.
✗ Branch 59 not taken.
|
10 | { return "SimpleCO2"; } |
51 | |||
52 | /*! | ||
53 | * \brief The mass in \f$\mathrm{[kg/mol]}\f$ of one mole of CO2. | ||
54 | */ | ||
55 | static constexpr Scalar molarMass() | ||
56 | { return 44.0e-3; /* [kg/mol] */ } | ||
57 | |||
58 | /*! | ||
59 | * \brief Returns the critical temperature \f$\mathrm{[K]}\f$ of CO2 | ||
60 | */ | ||
61 | static Scalar criticalTemperature() | ||
62 | { return 273.15 + 30.95; /* [K] */ } | ||
63 | |||
64 | /*! | ||
65 | * \brief Returns the critical pressure \f$\mathrm{[Pa]}\f$ of CO2 | ||
66 | */ | ||
67 | static Scalar criticalPressure() | ||
68 | { return 73.8e5; /* [Pa] */ } | ||
69 | |||
70 | /*! | ||
71 | * \brief Returns the temperature \f$\mathrm{[K]}\f$ at CO2's triple point. | ||
72 | */ | ||
73 | static Scalar tripleTemperature() | ||
74 | { return 273.15 - 56.35; /* [K] */ } | ||
75 | |||
76 | /*! | ||
77 | * \brief Returns the pressure \f$\mathrm{[Pa]}\f$ at CO2's triple point. | ||
78 | */ | ||
79 | static Scalar triplePressure() | ||
80 | { return 5.11e5; /* [N/m^2] */ } | ||
81 | |||
82 | |||
83 | /*! | ||
84 | * \brief Specific enthalpy of CO2 \f$\mathrm{[J/kg]}\f$. | ||
85 | * Shomate Equation is used for a temperature range of 298K to 6000K. | ||
86 | * | ||
87 | * \param temperature temperature of component in \f$\mathrm{[K]}\f$ | ||
88 | * \param pressure pressure of component in \f$\mathrm{[Pa]}\f$ | ||
89 | */ | ||
90 | ✗ | static const Scalar gasEnthalpy(Scalar temperature, | |
91 | Scalar pressure) | ||
92 | { | ||
93 |
1/2✓ Branch 2 taken 101 times.
✗ Branch 3 not taken.
|
101 | const auto h = shomateMethod.enthalpy(temperature); // KJ/mol |
94 | 101 | return h * 1e3 / molarMass(); // J/kg | |
95 | } | ||
96 | |||
97 | /*! | ||
98 | * \brief Specific internal energy of CO2 \f$\mathrm{[J/kg]}\f$. | ||
99 | * | ||
100 | * Definition of enthalpy: \f$h= u + pv = u + p / \rho\f$. | ||
101 | * Rearranging for internal energy yields: \f$u = h - pv\f$. | ||
102 | * Exploiting the Ideal Gas assumption (\f$pv = R_{\textnormal{specific}} T\f$)gives: \f$u = h - R / M T \f$. | ||
103 | * | ||
104 | * The universal gas constant can only be used in the case of molar formulations. | ||
105 | * \param temperature temperature of component in \f$\mathrm{[K]}\f$ | ||
106 | * \param pressure pressure of component in \f$\mathrm{[Pa]}\f$ | ||
107 | */ | ||
108 | static const Scalar gasInternalEnergy(Scalar temperature, | ||
109 | Scalar pressure) | ||
110 | { | ||
111 | // 1/molarMass: conversion from [J/(mol K)] to [J/(kg K)] | ||
112 | // R*T/molarMass: pressure *spec. volume for an ideal gas | ||
113 | return gasEnthalpy(temperature, pressure) | ||
114 | - 1.0/molarMass()*IdealGas::R*temperature; | ||
115 | } | ||
116 | |||
117 | /*! | ||
118 | * \brief Returns true if the gas phase is assumed to be compressible | ||
119 | */ | ||
120 | static constexpr bool gasIsCompressible() | ||
121 | { return true; } | ||
122 | |||
123 | /*! | ||
124 | * \brief Returns true if the gas phase viscostiy is constant | ||
125 | */ | ||
126 | static constexpr bool gasViscosityIsConstant() | ||
127 | { return false; } | ||
128 | |||
129 | /*! | ||
130 | * \brief The density \f$\mathrm{[kg/m^3]}\f$ of CO2 at a given pressure and temperature. | ||
131 | * | ||
132 | * \param temperature temperature of component in \f$\mathrm{[K]}\f$ | ||
133 | * \param pressure pressure of component in \f$\mathrm{[Pa]}\f$ | ||
134 | */ | ||
135 | static Scalar gasDensity(Scalar temperature, Scalar pressure) | ||
136 | 5191746 | { return IdealGas::density(molarMass(), temperature, pressure); } | |
137 | |||
138 | /*! | ||
139 | * \brief The molar density of CO2 in \f$\mathrm{[mol/m^3]}\f$ at a given pressure and temperature. | ||
140 | * | ||
141 | * \param temperature temperature of component in \f$\mathrm{[K]}\f$ | ||
142 | * \param pressure pressure of component in \f$\mathrm{[Pa]}\f$ | ||
143 | * | ||
144 | */ | ||
145 | static Scalar gasMolarDensity(Scalar temperature, Scalar pressure) | ||
146 | 5191544 | { return IdealGas::molarDensity(temperature, pressure); } | |
147 | |||
148 | /*! | ||
149 | * \brief Returns true if the gas phase is assumed to be ideal | ||
150 | */ | ||
151 | static constexpr bool gasIsIdeal() | ||
152 | { return true; } | ||
153 | |||
154 | /*! | ||
155 | * \brief The pressure of CO2 in \f$\mathrm{[Pa]}\f$ at a given density and temperature. | ||
156 | * | ||
157 | * \param temperature temperature of component in \f$\mathrm{[K]}\f$ | ||
158 | * \param density density of component in \f$\mathrm{[kg/m^3]}\f$ | ||
159 | */ | ||
160 | static Scalar gasPressure(Scalar temperature, Scalar density) | ||
161 | { return IdealGas::pressure(temperature, density/molarMass()); } | ||
162 | |||
163 | /*! | ||
164 | * \brief The dynamic viscosity \f$\mathrm{[Pa*s]}\f$ of CO2. | ||
165 | * Equations given in: - Vesovic et al., 1990 | ||
166 | * - Fenhour et al., 1998 | ||
167 | * \param temperature temperature of component in \f$\mathrm{[K]}\f$ | ||
168 | * \param pressure pressure of component in \f$\mathrm{[Pa]}\f$ | ||
169 | * TODO: this does not look like a really "simple" parameterization. Can this be simplified further? | ||
170 | */ | ||
171 | 5191645 | static Scalar gasViscosity(Scalar temperature, Scalar pressure) | |
172 | { | ||
173 | 5191645 | constexpr double a0 = 0.235156; | |
174 | 5191645 | constexpr double a1 = -0.491266; | |
175 | 5191645 | constexpr double a2 = 5.211155E-2; | |
176 | 5191645 | constexpr double a3 = 5.347906E-2; | |
177 | 5191645 | constexpr double a4 = -1.537102E-2; | |
178 | |||
179 | 5191645 | constexpr double d11 = 0.4071119E-2; | |
180 | 5191645 | constexpr double d21 = 0.7198037E-4; | |
181 | 5191645 | constexpr double d64 = 0.2411697E-16; | |
182 | 5191645 | constexpr double d81 = 0.2971072E-22; | |
183 | 5191645 | constexpr double d82 = -0.1627888E-22; | |
184 | |||
185 | 5191645 | constexpr double ESP = 251.196; | |
186 | |||
187 |
2/2✓ Branch 0 taken 4 times.
✓ Branch 1 taken 5191641 times.
|
5191645 | if(temperature < 275.0) // regularisation |
188 | { | ||
189 | 4 | temperature = 275.0; | |
190 | 4 | Dune::dgrave << "Temperature below 275K in viscosity function:" | |
191 | 4 | << "Regularizing temperature to 275K. " << std::endl; | |
192 | } | ||
193 | |||
194 | |||
195 | 5191645 | const double TStar = temperature/ESP; | |
196 | |||
197 | /* mu0: viscosity in zero-density limit */ | ||
198 | using std::exp; | ||
199 | using std::log; | ||
200 | using std::sqrt; | ||
201 | 5191645 | const double logTStar = log(TStar); | |
202 | 10383290 | const double SigmaStar = exp(a0 + a1*logTStar | |
203 | 5191645 | + a2*logTStar*logTStar | |
204 | 5191645 | + a3*logTStar*logTStar*logTStar | |
205 | 5191645 | + a4*logTStar*logTStar*logTStar*logTStar ); | |
206 | 5191645 | const double mu0 = 1.00697*sqrt(temperature) / SigmaStar; | |
207 | |||
208 | /* dmu : excess viscosity at elevated density */ | ||
209 | 5191645 | const double rho = gasDensity(temperature, pressure); /* CO2 mass density [kg/m^3] */ | |
210 | |||
211 | using Dune::power; | ||
212 | 5191645 | const double dmu = d11*rho + d21*rho*rho + d64*power(rho, 6)/(TStar*TStar*TStar) | |
213 | 10383290 | + d81*power(rho, 8) + d82*power(rho, 8)/TStar; | |
214 | |||
215 | 5191645 | return (mu0 + dmu)/1.0E6; /* conversion to [Pa s] */ | |
216 | } | ||
217 | |||
218 | |||
219 | /*! | ||
220 | * \brief Thermal conductivity \f$\mathrm{[[W/(m*K)]}\f$ of CO2. | ||
221 | * | ||
222 | * Thermal conductivity of CO2 at T=20°C, see: | ||
223 | * http://www.engineeringtoolbox.com/carbon-dioxide-d_1000.html | ||
224 | * | ||
225 | * \param temperature absolute temperature in \f$\mathrm{[K]}\f$ | ||
226 | * \param pressure of the phase in \f$\mathrm{[Pa]}\f$ | ||
227 | */ | ||
228 | ✗ | static Scalar gasThermalConductivity(Scalar temperature, Scalar pressure) | |
229 | { | ||
230 | ✗ | return 0.087; | |
231 | } | ||
232 | |||
233 | /*! | ||
234 | * \brief Specific isobaric heat capacity of CO2 \f$\mathrm{[J/(kg*K)]}\f$. | ||
235 | * Shomate Equation is used for a temperature range of 298K to 6000K. | ||
236 | * | ||
237 | * \param temperature temperature of component in \f$\mathrm{[K]}\f$ | ||
238 | * \param pressure pressure of component in \f$\mathrm{[Pa]}\f$ | ||
239 | */ | ||
240 | ✗ | static Scalar gasHeatCapacity(Scalar temperature, Scalar pressure) | |
241 | { | ||
242 |
1/2✓ Branch 2 taken 101 times.
✗ Branch 3 not taken.
|
101 | const auto cp = shomateMethod.heatCapacity(temperature); // J/(mol K) |
243 | 101 | return cp / molarMass(); // J/(kg K) | |
244 | } | ||
245 | |||
246 | }; | ||
247 | |||
248 | /*! | ||
249 | * \brief Shomate parameters for carbon dioxide published by NIST \cite NIST | ||
250 | * https://webbook.nist.gov/cgi/cbook.cgi?ID=C124389&Units=SI&Mask=1&Type=JANAFG&Table=on#JANAFG | ||
251 | * First row defines the temperature ranges, further rows give the parameters (A,B,C,D,E,F,G,H) for the respective temperature ranges. | ||
252 | */ | ||
253 | template <class Scalar> | ||
254 | const typename SimpleCO2<Scalar>::ShomateMethod SimpleCO2<Scalar>::shomateMethod{ | ||
255 | /*temperature*/{298.0, 1200.0, 6000.0}, | ||
256 | typename SimpleCO2<Scalar>::ShomateMethod::Coefficients{{ | ||
257 | {24.99735, 55.18696, -33.69137, 7.948387, -0.136638, -403.6075, 228.2431, -393.5224}, | ||
258 | {58.16639, 2.720074, -0.492289, 0.038844, -6.447293, -425.9186, 263.6125, -393.5224} | ||
259 | }} | ||
260 | }; | ||
261 | |||
262 | |||
263 | } // end namespace Dumux::Components | ||
264 | |||
265 | #endif | ||
266 |