Line | Branch | Exec | Source |
---|---|---|---|
1 | // -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- | ||
2 | // vi: set et ts=4 sw=4 sts=4: | ||
3 | // | ||
4 | // SPDX-FileCopyrightInfo: Copyright © DuMux Project contributors, see AUTHORS.md in root folder | ||
5 | // SPDX-License-Identifier: GPL-3.0-or-later | ||
6 | // | ||
7 | #ifndef DUMUX_MATERIAL_FLUIDMATRIX_THERMALCONDUCTIVITY_SOMERTON_TWO_P_HH | ||
8 | #define DUMUX_MATERIAL_FLUIDMATRIX_THERMALCONDUCTIVITY_SOMERTON_TWO_P_HH | ||
9 | |||
10 | #include <algorithm> | ||
11 | #include <cmath> | ||
12 | |||
13 | namespace Dumux { | ||
14 | |||
15 | /*! | ||
16 | * \addtogroup EffectiveHeatConductivity | ||
17 | * \copydetails Dumux::ThermalConductivitySomertonTwoP | ||
18 | */ | ||
19 | |||
20 | /*! | ||
21 | * \ingroup EffectiveHeatConductivity | ||
22 | * \brief Effective thermal conductivity after Somerton | ||
23 | * | ||
24 | * ### Somerton (two fluid phases) | ||
25 | * | ||
26 | * The Somerton method \cite somerton1974 computes the thermal conductivity of dry and the wet soil material. | ||
27 | * It uses a root function of the water saturation to compute the | ||
28 | * effective thermal conductivity for a two-phase fluidsystem. The individual thermal | ||
29 | * conductivities are calculated as geometric mean of the thermal conductivity of the porous | ||
30 | * material and of the respective fluid phase. | ||
31 | * | ||
32 | * The effective thermal conductivity of `ThermalConductivitySomertonTwoP` is given by | ||
33 | * \f[ | ||
34 | * \lambda_\text{eff} = \lambda_\text{g,eff} + \sqrt{S_\text{w}} \left(\lambda_\text{w,eff} - \lambda_\text{g,eff}\right) | ||
35 | * \f] | ||
36 | * | ||
37 | * with \f$ S_\text{w} \f$ the water saturation, | ||
38 | * \f$ S_\text{n} \f$ the NAPL saturation, the effective phase saturations given by | ||
39 | * \f$ \lambda_{\alpha,\text{eff}} = (\lambda_\text{s})^{\left(1-\phi\right)} (\lambda_\alpha)^\phi, \alpha \in \lbrace\text{w,n,g}\rbrace \f$ | ||
40 | * (geometric mean) and \f$ \lambda_\text{s} \f$ is the thermal conductivity of the solid phase. | ||
41 | * The effective conductivity \f$ \lambda_\text{g,eff} \f$ corresponds to dry conditions, whereas the | ||
42 | * effective conductivity \f$ \lambda_\text{g,eff} \f$ corresponds to wet conditions. | ||
43 | */ | ||
44 | template<class Scalar> | ||
45 | class ThermalConductivitySomertonTwoP | ||
46 | { | ||
47 | public: | ||
48 | /*! | ||
49 | * \brief Effective thermal conductivity in \f$\mathrm{W/(m K)}\f$ for two phases | ||
50 | * \param volVars volume variables | ||
51 | * \return Effective thermal conductivity in \f$\mathrm{W/(m K)}\f$ for two phases | ||
52 | */ | ||
53 | template<class VolumeVariables> | ||
54 | 63556431 | static Scalar effectiveThermalConductivity(const VolumeVariables& volVars) | |
55 | { | ||
56 | using FluidSystem = typename VolumeVariables::FluidSystem; | ||
57 | static_assert(FluidSystem::numPhases == 2, "ThermalConductivitySomertonTwoP only works for two-phase fluid systems!"); | ||
58 | static_assert((FluidSystem::isGas(0) && !FluidSystem::isGas(1)) || (!FluidSystem::isGas(0) && FluidSystem::isGas(1)), | ||
59 | "ThermalConductivitySomertonTwoP only works if one phase is gaseous and one is liquid!"); | ||
60 | |||
61 | 63557432 | constexpr int liquidPhaseIdx = FluidSystem::isGas(0) ? 1 : 0; | |
62 | 63557432 | constexpr int gasPhaseIdx = FluidSystem::isGas(0) ? 0 : 1; | |
63 | |||
64 | 63557432 | const Scalar satLiquid = volVars.saturation(liquidPhaseIdx); | |
65 | 63557432 | const Scalar lambdaLiquid = volVars.fluidThermalConductivity(liquidPhaseIdx); | |
66 | 63557415 | const Scalar lambdaGas = volVars.fluidThermalConductivity(gasPhaseIdx); | |
67 | 63557415 | const Scalar lambdaSolid = volVars.solidThermalConductivity(); | |
68 | 63557415 | const Scalar porosity = volVars.porosity(); | |
69 | |||
70 | 63557415 | return effectiveThermalConductivity_(satLiquid, lambdaLiquid, lambdaGas, lambdaSolid, porosity); | |
71 | } | ||
72 | |||
73 | private: | ||
74 | /*! | ||
75 | * \brief Effective thermal conductivity in \f$\mathrm{W/(m K)}\f$ for two phases | ||
76 | * | ||
77 | * \param satLiquid The saturation of the liquid phase | ||
78 | * \param lambdaLiquid The thermal conductivity of the liquid phase in \f$\mathrm{W/(m K)}\f$ | ||
79 | * \param lambdaGas The thermal conductivity of the gas phase in \f$\mathrm{W/(m K)}\f$ | ||
80 | * \param lambdaSolid The thermal conductivity of the solid phase in \f$\mathrm{W/(m K)}\f$ | ||
81 | * \param porosity The porosity | ||
82 | * | ||
83 | * \brief Effective thermal conductivity in \f$\mathrm{W/(m K)}\f$ for two phases | ||
84 | */ | ||
85 | 63557415 | static Scalar effectiveThermalConductivity_(const Scalar satLiquid, | |
86 | const Scalar lambdaLiquid, | ||
87 | const Scalar lambdaGas, | ||
88 | const Scalar lambdaSolid, | ||
89 | const Scalar porosity) | ||
90 | { | ||
91 | using std::max; | ||
92 | using std::pow; | ||
93 | using std::sqrt; | ||
94 |
2/2✓ Branch 0 taken 63543832 times.
✓ Branch 1 taken 13583 times.
|
63557415 | const Scalar satLiquidPhysical = max<Scalar>(0.0, satLiquid); |
95 | // geometric mean, using ls^(1-p)*l^p = ls*(l/ls)^p | ||
96 | 63557415 | const Scalar lambdaSaturated = lambdaSolid * pow(lambdaLiquid / lambdaSolid, porosity); | |
97 | 63557415 | const Scalar lambdaDry = lambdaSolid * pow(lambdaGas / lambdaSolid, porosity); | |
98 | |||
99 | 63557415 | return lambdaDry + sqrt(satLiquidPhysical) * (lambdaSaturated - lambdaDry); | |
100 | } | ||
101 | }; | ||
102 | |||
103 | #ifndef DOXYGEN | ||
104 | template<class Scalar> | ||
105 | using ThermalConductivitySomerton [[deprecated("Use ThermalConductivitySomertonTwoP. Will be removed after 3.9.")]] = ThermalConductivitySomertonTwoP<Scalar>; | ||
106 | #endif | ||
107 | |||
108 | } // end namespace Dumux | ||
109 | |||
110 | #endif | ||
111 |