Line | Branch | Exec | Source |
---|---|---|---|
1 | // -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- | ||
2 | // vi: set et ts=4 sw=4 sts=4: | ||
3 | // | ||
4 | // SPDX-FileCopyrightInfo: Copyright © DuMux Project contributors, see AUTHORS.md in root folder | ||
5 | // SPDX-License-Identifier: GPL-3.0-or-later | ||
6 | // | ||
7 | /*! | ||
8 | * \file | ||
9 | * \ingroup FreeflowModels | ||
10 | * \brief This file contains different functions for estimating turbulence properties. | ||
11 | */ | ||
12 | |||
13 | #ifndef DUMUX_TURBULENCE_PROPERTIES_HH | ||
14 | #define DUMUX_TURBULENCE_PROPERTIES_HH | ||
15 | |||
16 | #include <iostream> | ||
17 | |||
18 | #include<dune/common/fvector.hh> | ||
19 | |||
20 | namespace Dumux { | ||
21 | |||
22 | /*! | ||
23 | * \brief This class contains different functions for estimating turbulence properties. | ||
24 | */ | ||
25 | template<class Scalar, unsigned dim, bool verbose = false> | ||
26 | class TurbulenceProperties | ||
27 | { | ||
28 | public: | ||
29 | /*! | ||
30 | * \brief Estimates dimensionless wall distance \f$ y^+ \f$ based on a formula given in | ||
31 | * http://www.cfd-online.com/Wiki/Y_plus_wall_distance_estimation | ||
32 | */ | ||
33 | Scalar yPlusEstimation(const Scalar velocity, | ||
34 | const Dune::FieldVector<Scalar, dim> position, | ||
35 | const Scalar kinematicViscosity, | ||
36 | const Scalar density, | ||
37 | int yCoordDim=dim-1, | ||
38 | bool print=verbose) const | ||
39 | { | ||
40 | using std::pow; | ||
41 | using std::log10; | ||
42 | using std::sqrt; | ||
43 | const Scalar re_x = reynoldsNumber(velocity, position[0], kinematicViscosity, false); | ||
44 | const Scalar c_f = pow((2.0 * log10(re_x) - 0.65), -2.3); // for re_x < 10^9 | ||
45 | const Scalar wallShearStress = 0.5 * c_f * density * velocity * velocity; | ||
46 | const Scalar frictionVelocity = sqrt(wallShearStress / density); | ||
47 | const Scalar yPlus = position[yCoordDim] * frictionVelocity / kinematicViscosity; | ||
48 | if (print) | ||
49 | { | ||
50 | std::cout << "turbulence properties at ("; | ||
51 | for (unsigned int dimIdx = 0; dimIdx < dim; ++dimIdx) | ||
52 | std::cout << position[dimIdx] << ","; | ||
53 | std::cout << ")" << std::endl; | ||
54 | std::cout << "estimated Re_x : " << re_x << " [-]" << std::endl; | ||
55 | std::cout << "estimated c_f : " << c_f << " [-]" << std::endl; | ||
56 | std::cout << "estimated tau_w : " << wallShearStress << " [kg/(m*s^2)]" << std::endl; | ||
57 | std::cout << "estimated UStar : " << frictionVelocity << " [m/s]" << std::endl; | ||
58 | std::cout << "estimated yPlus : " << yPlus << " [-]" << std::endl; | ||
59 | std::cout << std::endl; | ||
60 | } | ||
61 | return yPlus; | ||
62 | } | ||
63 | |||
64 | /*! | ||
65 | * \brief Estimates the entrance length for this pipe | ||
66 | */ | ||
67 | Scalar entranceLength(const Scalar velocity, | ||
68 | const Scalar diameter, | ||
69 | const Scalar kinematicViscosity, | ||
70 | bool print=verbose) const | ||
71 | { | ||
72 | using std::pow; | ||
73 | const Scalar re_d = reynoldsNumber(velocity, diameter, kinematicViscosity, false); | ||
74 | const Scalar entranceLength = 4.4 * pow(re_d, 1.0/6.0) * diameter; | ||
75 | if (print) | ||
76 | { | ||
77 | std::cout << "estimated Re_d : " << re_d << " [-]" << std::endl; | ||
78 | std::cout << "estimated l_ent : " << entranceLength << " [m]"<< std::endl; | ||
79 | std::cout << std::endl; | ||
80 | } | ||
81 | return entranceLength; | ||
82 | } | ||
83 | |||
84 | /*! | ||
85 | * \brief Calculates the Reynolds number | ||
86 | */ | ||
87 | Scalar reynoldsNumber(const Scalar velocity, | ||
88 | const Scalar charLengthScale/*e.g. diameter*/, | ||
89 | const Scalar kinematicViscosity, | ||
90 | bool print=verbose) const | ||
91 | { | ||
92 | using std::abs; | ||
93 | 174 | return abs(velocity * charLengthScale / kinematicViscosity); | |
94 | } | ||
95 | |||
96 | /*! | ||
97 | * \brief Estimates the turbulence intensity based on a formula given | ||
98 | * in the ANSYS Fluent user guide \cite ANSYSUserGuide12 | ||
99 | */ | ||
100 | 145 | Scalar turbulenceIntensity(const Scalar reynoldsNumber, | |
101 | bool print=verbose) const | ||
102 | { | ||
103 | using std::pow; | ||
104 | 145 | const Scalar turbulenceIntensity = 0.16 * pow(reynoldsNumber, -0.125); | |
105 |
2/2✓ Branch 0 taken 29 times.
✓ Branch 1 taken 116 times.
|
145 | if (print) |
106 | { | ||
107 | 87 | std::cout << "estimated I : " << turbulenceIntensity << " [-]" << std::endl; | |
108 | } | ||
109 | 145 | return turbulenceIntensity; | |
110 | } | ||
111 | |||
112 | /*! | ||
113 | * \brief Estimates the turbulence length scale based on a formula given | ||
114 | * in the ANSYS Fluent user guide \cite ANSYSUserGuide12 | ||
115 | */ | ||
116 | 58 | Scalar turbulenceLengthScale(const Scalar charLengthScale/*e.g. diameter*/, | |
117 | bool print=verbose) const | ||
118 | { | ||
119 | 58 | const Scalar turbulenceLengthScale = 0.07 * charLengthScale; | |
120 |
2/2✓ Branch 0 taken 29 times.
✓ Branch 1 taken 29 times.
|
58 | if (print) |
121 | { | ||
122 | 87 | std::cout << "estimated l_turb: " << turbulenceLengthScale << " [m]" << std::endl; | |
123 | } | ||
124 | 58 | return turbulenceLengthScale; | |
125 | } | ||
126 | |||
127 | /*! | ||
128 | * \brief Estimates the turbulent kinetic energy based on a formula given | ||
129 | * in the ANSYS Fluent user guide \cite ANSYSUserGuide12 | ||
130 | */ | ||
131 | 58 | Scalar turbulentKineticEnergy(const Scalar velocity, | |
132 | const Scalar diameter, | ||
133 | const Scalar kinematicViscosity, | ||
134 | bool print=verbose) const | ||
135 | { | ||
136 | 58 | const Scalar re_d = reynoldsNumber(velocity, diameter, kinematicViscosity, false); | |
137 | 116 | const Scalar k = 1.5 * velocity * velocity | |
138 | 58 | * turbulenceIntensity(re_d, false) * turbulenceIntensity(re_d, false); | |
139 |
2/2✓ Branch 0 taken 29 times.
✓ Branch 1 taken 29 times.
|
58 | if (print) |
140 | { | ||
141 | 87 | std::cout << "estimated k : " << k << " [m^2/s^2]" << std::endl; | |
142 | } | ||
143 | 58 | return k; | |
144 | } | ||
145 | |||
146 | /*! | ||
147 | * \brief Estimates the dissipation based on a formula given | ||
148 | * in the ANSYS Fluent user guide \cite ANSYSUserGuide12 | ||
149 | */ | ||
150 | 20 | Scalar dissipation(const Scalar velocity, | |
151 | const Scalar diameter, | ||
152 | const Scalar kinematicViscosity, | ||
153 | bool print=verbose) const | ||
154 | { | ||
155 | using std::pow; | ||
156 | 20 | const Scalar k = turbulentKineticEnergy(velocity, diameter, kinematicViscosity, false); | |
157 | 20 | const Scalar factor = 0.1643; // = cMu^(3/4) = 0.09^(3/4) | |
158 | 20 | const Scalar epsilon = factor * pow(k, 1.5) / turbulenceLengthScale(diameter, false); | |
159 |
1/2✓ Branch 0 taken 20 times.
✗ Branch 1 not taken.
|
20 | if (print) |
160 | { | ||
161 | 60 | std::cout << "estimated eps. : " << epsilon << " [m^2/s^3]" << std::endl; | |
162 | } | ||
163 | 20 | return epsilon; | |
164 | } | ||
165 | |||
166 | /*! | ||
167 | * \brief Estimates the dissipation rate based on a formula given | ||
168 | * in the ANSYS Fluent user guide \cite ANSYSUserGuide12 | ||
169 | * \f[ \omega = \frac{k^{1/2}}{C_{\mu}^{1/4}L} \f] | ||
170 | */ | ||
171 | 9 | Scalar dissipationRate(const Scalar velocity, | |
172 | const Scalar diameter, | ||
173 | const Scalar kinematicViscosity, | ||
174 | bool print=verbose) const | ||
175 | { | ||
176 | using std::pow; | ||
177 | 9 | const Scalar k = turbulentKineticEnergy(velocity, diameter, kinematicViscosity, false); | |
178 | 9 | const Scalar factor = 0.54772; // = cMu^(1/4) = 0.09^(1/4) | |
179 | 9 | const Scalar L = turbulenceLengthScale(diameter , false); | |
180 | 9 | const Scalar omega = pow(k, 0.5) / (L*factor); | |
181 |
1/2✓ Branch 0 taken 9 times.
✗ Branch 1 not taken.
|
9 | if (print) |
182 | { | ||
183 | 27 | std::cout << "estimated omega : " << omega << " [1/s]" << std::endl; | |
184 | |||
185 | } | ||
186 | 9 | return omega; | |
187 | } | ||
188 | |||
189 | /*! | ||
190 | * \brief Estimates the viscosity tilde based on a formula given in | ||
191 | * in the ANSYS Fluent user guide \cite ANSYSUserGuide12 | ||
192 | */ | ||
193 | 29 | Scalar viscosityTilde(const Scalar velocity, | |
194 | const Scalar diameter, | ||
195 | const Scalar kinematicViscosity, | ||
196 | bool print=verbose) const | ||
197 | { | ||
198 | using std::abs; | ||
199 | using std::sqrt; | ||
200 | 29 | const Scalar re_d = reynoldsNumber(velocity, diameter, kinematicViscosity, false); | |
201 | 29 | const Scalar viscosityTilde = sqrt(1.5) * abs(velocity) | |
202 | 29 | * turbulenceIntensity(re_d) | |
203 | 29 | * turbulenceLengthScale(diameter); | |
204 |
1/2✓ Branch 0 taken 29 times.
✗ Branch 1 not taken.
|
29 | if (print) |
205 | { | ||
206 | 87 | std::cout << "estimated nu~ : " << viscosityTilde << " [m^2/s]" << std::endl; | |
207 | } | ||
208 | 29 | return viscosityTilde; | |
209 | } | ||
210 | }; | ||
211 | } // end namespace Dumux | ||
212 | |||
213 | #endif | ||
214 |