Line | Branch | Exec | Source |
---|---|---|---|
1 | // -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- | ||
2 | // vi: set et ts=4 sw=4 sts=4: | ||
3 | // | ||
4 | // SPDX-FileCopyrightInfo: Copyright © DuMux Project contributors, see AUTHORS.md in root folder | ||
5 | // SPDX-License-Identifier: GPL-3.0-or-later | ||
6 | // | ||
7 | /*! | ||
8 | * \file | ||
9 | * \ingroup Fluidmatrixinteractions | ||
10 | * \brief Implementation of the capillary pressure and | ||
11 | * relative permeability <-> saturation relations according to van Genuchten. | ||
12 | */ | ||
13 | #ifndef DUMUX_MATERIAL_FLUIDMATRIX_VAN_GENUCHTEN_HH | ||
14 | #define DUMUX_MATERIAL_FLUIDMATRIX_VAN_GENUCHTEN_HH | ||
15 | |||
16 | #include <cmath> | ||
17 | #include <algorithm> | ||
18 | |||
19 | #include <dumux/common/parameters.hh> | ||
20 | #include <dumux/common/spline.hh> | ||
21 | #include <dumux/common/optionalscalar.hh> | ||
22 | #include <dumux/material/fluidmatrixinteractions/2p/materiallaw.hh> | ||
23 | |||
24 | namespace Dumux::FluidMatrix { | ||
25 | |||
26 | /*! | ||
27 | * \ingroup Fluidmatrixinteractions | ||
28 | * \brief Implementation of the van Genuchten capillary pressure <-> | ||
29 | * saturation relation, and relative permeability. | ||
30 | * | ||
31 | * \note Capillary pressure model from van Genuchten (1980), | ||
32 | * relative permeability model from Mualem (1976) | ||
33 | */ | ||
34 | class VanGenuchten | ||
35 | { | ||
36 | |||
37 | public: | ||
38 | /*! | ||
39 | * \brief The parameter type | ||
40 | * \tparam Scalar The scalar type | ||
41 | * \note The van Genuchten laws are parameterized with four parameters: \f$\mathrm{n, m, \alpha, l}\f$. | ||
42 | * | ||
43 | * - \f$\mathrm{\alpha}\f$ shape parameter \f$\mathrm{[1/Pa]}\f$ | ||
44 | * - \f$\mathrm{m}\f$ shape parameter \f$\mathrm{[-]}\f$ | ||
45 | * - \f$\mathrm{n}\f$ shape parameter \f$\mathrm{[-]}\f$ | ||
46 | * - \f$\mathrm{l}\f$ pore-connectivity parameter \f$\mathrm{[-]}\f$ of Mualem's relative permeability curve | ||
47 | * | ||
48 | * \note In the original Mualem (1976) paper the pore-connectivity parameter is called "n". It's referred to as "l" in | ||
49 | * several later publication of van Genuchten, e.g. van Genuchten (1991), Shaap & van Genuchten (2006). | ||
50 | */ | ||
51 | template<class Scalar> | ||
52 | struct Params | ||
53 | { | ||
54 | 128 | Params(Scalar alpha, Scalar n, Scalar l = 0.5) | |
55 | 128 | : alpha_(alpha), n_(n), m_(1.0 - 1.0/n), l_(l) | |
56 | {} | ||
57 | |||
58 | ✗ | Scalar alpha() const { return alpha_; } | |
59 | void setAlpha(Scalar alpha) { alpha_ = alpha; } | ||
60 | |||
61 | ✗ | Scalar m() const { return m_; } | |
62 | void setM(Scalar m) { m_ = m; n_ = 1.0/(1.0 - m); } | ||
63 | |||
64 | ✗ | Scalar n() const{ return n_; } | |
65 | void setN(Scalar n){ n_ = n; m_ = 1.0 - 1.0/n; } | ||
66 | |||
67 | ✗ | Scalar l() const { return l_; } | |
68 | void setL(Scalar l) { l_ = l; } | ||
69 | |||
70 | 4527 | bool operator== (const Params& p) const | |
71 | { | ||
72 |
2/2✓ Branch 0 taken 63 times.
✓ Branch 1 taken 4464 times.
|
4527 | return Dune::FloatCmp::eq(alpha_, p.alpha_, 1e-6) |
73 |
2/4✗ Branch 0 not taken.
✓ Branch 1 taken 4401 times.
✓ Branch 2 taken 4401 times.
✗ Branch 3 not taken.
|
4401 | && Dune::FloatCmp::eq(n_, p.n_, 1e-6) |
74 |
2/4✗ Branch 0 not taken.
✓ Branch 1 taken 4401 times.
✓ Branch 2 taken 4401 times.
✗ Branch 3 not taken.
|
4401 | && Dune::FloatCmp::eq(m_, p.m_, 1e-6) |
75 |
4/6✓ Branch 0 taken 4401 times.
✓ Branch 1 taken 126 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 4401 times.
✗ Branch 4 not taken.
✓ Branch 5 taken 4401 times.
|
8928 | && Dune::FloatCmp::eq(l_, p.l_, 1e-6); |
76 | } | ||
77 | |||
78 | private: | ||
79 | Scalar alpha_, n_, m_, l_; | ||
80 | }; | ||
81 | |||
82 | /*! | ||
83 | * \brief Construct from a subgroup from the global parameter tree | ||
84 | * \note This will give you nice error messages if a mandatory parameter is missing | ||
85 | */ | ||
86 | template<class Scalar = double> | ||
87 | 127 | static Params<Scalar> makeParams(const std::string& paramGroup) | |
88 | { | ||
89 | 127 | const auto n = getParamFromGroup<Scalar>(paramGroup, "VanGenuchtenN"); | |
90 | 127 | const auto alpha = getParamFromGroup<Scalar>(paramGroup, "VanGenuchtenAlpha"); | |
91 | // l is usually chosen to be 0.5 (according to Mualem (1976), WRR) | ||
92 | 127 | const auto l = getParamFromGroup<Scalar>(paramGroup, "VanGenuchtenL", 0.5); | |
93 | 254 | return Params<Scalar>(alpha, n, l); | |
94 | } | ||
95 | |||
96 | /*! | ||
97 | * \brief The capillary pressure-saturation curve according to van Genuchten. | ||
98 | * | ||
99 | * Van Genuchten's empirical capillary pressure <-> saturation | ||
100 | * function is given by | ||
101 | * \f$\mathrm{ | ||
102 | p_c = (\overline{S}_w^{-1/m} - 1)^{1/n}/\alpha | ||
103 | }\f$ | ||
104 | * \param swe Effective saturation of the wetting phase \f$\mathrm{\overline{S}_w}\f$ | ||
105 | * \param params A container object that is populated with the appropriate coefficients for the respective law. | ||
106 | * \note Instead of undefined behaviour if swe is not in the valid range, we return a valid number, | ||
107 | * by clamping the input. Note that pc(swe = 0.0) = inf, have a look at RegularizedVanGenuchten if this is a problem. | ||
108 | */ | ||
109 | template<class Scalar> | ||
110 | 12992982 | static Scalar pc(Scalar swe, const Params<Scalar>& params) | |
111 | { | ||
112 | using std::pow; | ||
113 | using std::clamp; | ||
114 | |||
115 |
1/2✓ Branch 0 taken 12992982 times.
✗ Branch 1 not taken.
|
12992982 | swe = clamp(swe, 0.0, 1.0); // the equation below is only defined for 0.0 <= sw <= 1.0 |
116 | |||
117 | 12992982 | const Scalar pc = pow(pow(swe, -1.0/params.m()) - 1, 1.0/params.n())/params.alpha(); | |
118 | 12992982 | return pc; | |
119 | } | ||
120 | |||
121 | /*! | ||
122 | * \brief The saturation-capillary pressure curve according to van Genuchten. | ||
123 | * | ||
124 | * This is the inverse of the capillary pressure-saturation curve: | ||
125 | * \f$\mathrm{ | ||
126 | \overline{S}_w = {p_c}^{-1} = ((\alpha p_c)^n + 1)^{-m} | ||
127 | }\f$ | ||
128 | * | ||
129 | * \param pc Capillary pressure \f$\mathrm{p_c}\f$ in \f$\mathrm{[Pa]}\f$ | ||
130 | * \param params A container object that is populated with the appropriate coefficients for the respective law. | ||
131 | * \return The effective saturation of the wetting phase \f$\mathrm{\overline{S}_w}\f$ | ||
132 | * \note Instead of undefined behaviour if pc is not in the valid range, we return a valid number, | ||
133 | * i.e. sw(pc < 0.0) = 0.0, by clamping the input to the physical bounds. | ||
134 | */ | ||
135 | template<class Scalar> | ||
136 | 779931501 | static Scalar swe(Scalar pc, const Params<Scalar>& params) | |
137 | { | ||
138 | using std::pow; | ||
139 | using std::max; | ||
140 | |||
141 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 779931501 times.
|
779931501 | pc = max(pc, 0.0); // the equation below is undefined for negative pcs |
142 | |||
143 | 779931501 | const Scalar sw = pow(pow(params.alpha()*pc, params.n()) + 1, -params.m()); | |
144 | 779931501 | return sw; | |
145 | } | ||
146 | |||
147 | /*! | ||
148 | * \brief The capillary pressure at Swe = 1.0 also called end point capillary pressure | ||
149 | * \param params A container object that is populated with the appropriate coefficients for the respective law. | ||
150 | */ | ||
151 | template<class Scalar> | ||
152 | ✗ | static Scalar endPointPc(const Params<Scalar>& params) | |
153 | ✗ | { return 0.0; } | |
154 | |||
155 | /*! | ||
156 | * \brief The partial derivative of the capillary | ||
157 | * pressure w.r.t. the effective saturation according to van Genuchten. | ||
158 | * | ||
159 | * This is equivalent to | ||
160 | * \f$\mathrm{ | ||
161 | \frac{\partial p_c}{\partial \overline{S}_w} = | ||
162 | -\frac{1}{\alpha} (\overline{S}_w^{-1/m} - 1)^{1/n - } | ||
163 | \overline{S}_w^{-1/m} / \overline{S}_w / m | ||
164 | }\f$ | ||
165 | * | ||
166 | * \param swe Effective saturation of the wetting phase \f$\mathrm{\overline{S}_w}\f$ | ||
167 | * \param params A container object that is populated with the appropriate coefficients for the respective law. | ||
168 | * \note Instead of undefined behaviour if swe is not in the valid range, we return a valid number, | ||
169 | * by clamping the input. | ||
170 | */ | ||
171 | template<class Scalar> | ||
172 | 11658376 | static Scalar dpc_dswe(Scalar swe, const Params<Scalar>& params) | |
173 | { | ||
174 | using std::pow; | ||
175 | using std::clamp; | ||
176 | |||
177 |
1/2✓ Branch 0 taken 11658376 times.
✗ Branch 1 not taken.
|
11658376 | swe = clamp(swe, 0.0, 1.0); // the equation below is only defined for 0.0 <= sw <= 1.0 |
178 | |||
179 | 11658376 | const Scalar powSwe = pow(swe, -1/params.m()); | |
180 | 11658376 | return - 1.0/params.alpha() * pow(powSwe - 1, 1.0/params.n() - 1)/params.n() | |
181 | 11658376 | * powSwe/swe/params.m(); | |
182 | } | ||
183 | |||
184 | /*! | ||
185 | * \brief The partial derivative of the effective | ||
186 | * saturation to the capillary pressure according to van Genuchten. | ||
187 | * | ||
188 | * \param pc Capillary pressure \f$\mathrm{p_C}\f$ in \f$\mathrm{[Pa]}\f$ | ||
189 | * \param params A container object that is populated with the appropriate coefficients for the respective law. | ||
190 | * \note Instead of undefined behaviour if pc is not in the valid range, we return a valid number, | ||
191 | * by clamping the input. | ||
192 | */ | ||
193 | template<class Scalar> | ||
194 | 38360413 | static Scalar dswe_dpc(Scalar pc, const Params<Scalar>& params) | |
195 | { | ||
196 | using std::pow; | ||
197 | using std::max; | ||
198 | |||
199 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 38360413 times.
|
38360413 | pc = max(pc, 0.0); // the equation below is undefined for negative pcs |
200 | |||
201 | 38360413 | const Scalar powAlphaPc = pow(params.alpha()*pc, params.n()); | |
202 | 38360413 | return -pow(powAlphaPc + 1, -params.m()-1)*params.m()*powAlphaPc/pc*params.n(); | |
203 | } | ||
204 | |||
205 | /*! | ||
206 | * \brief The relative permeability for the wetting phase of | ||
207 | * the medium implied by van Genuchten / Mualem | ||
208 | * parameterization. | ||
209 | * | ||
210 | * \param swe The mobile saturation of the wetting phase. | ||
211 | * \param params A container object that is populated with the appropriate coefficients for the respective law. | ||
212 | * \note Instead of undefined behaviour if pc is not in the valid range, we return a valid number, | ||
213 | * by clamping the input. | ||
214 | */ | ||
215 | template<class Scalar> | ||
216 | 807364070 | static Scalar krw(Scalar swe, const Params<Scalar>& params) | |
217 | { | ||
218 | using std::pow; | ||
219 | using std::clamp; | ||
220 | |||
221 |
1/2✓ Branch 0 taken 807364070 times.
✗ Branch 1 not taken.
|
807364070 | swe = clamp(swe, 0.0, 1.0); // the equation below is only defined for 0.0 <= sw <= 1.0 |
222 | |||
223 | 807364070 | const Scalar r = 1.0 - pow(1.0 - pow(swe, 1.0/params.m()), params.m()); | |
224 | 807364070 | return pow(swe, params.l())*r*r; | |
225 | } | ||
226 | |||
227 | /*! | ||
228 | * \brief The derivative of the relative permeability for the | ||
229 | * wetting phase in regard to the wetting saturation of the | ||
230 | * medium implied by the van Genuchten parameterization. | ||
231 | * | ||
232 | * \param swe The mobile saturation of the wetting phase. | ||
233 | * \param params A container object that is populated with the appropriate coefficients for the respective law. | ||
234 | * \note Instead of undefined behaviour if pc is not in the valid range, we return a valid number, | ||
235 | * by clamping the input. | ||
236 | */ | ||
237 | template<class Scalar> | ||
238 | 29567647 | static Scalar dkrw_dswe(Scalar swe, const Params<Scalar>& params) | |
239 | { | ||
240 | using std::pow; | ||
241 | using std::clamp; | ||
242 | |||
243 |
1/2✓ Branch 0 taken 29567647 times.
✗ Branch 1 not taken.
|
29567647 | swe = clamp(swe, 0.0, 1.0); // the equation below is only defined for 0.0 <= sw <= 1.0 |
244 | |||
245 | 29567647 | const Scalar x = 1.0 - pow(swe, 1.0/params.m()); | |
246 | 29567647 | const Scalar xToM = pow(x, params.m()); | |
247 | 29567647 | return (1.0 - xToM)*pow(swe, params.l()-1) * ( (1.0 - xToM)*params.l() + 2*xToM*(1.0-x)/x ); | |
248 | } | ||
249 | |||
250 | /*! | ||
251 | * \brief The relative permeability for the non-wetting phase | ||
252 | * of the medium implied by van Genuchten's | ||
253 | * parameterization. | ||
254 | * | ||
255 | * \param swe The mobile saturation of the wetting phase. | ||
256 | * \param params A container object that is populated with the appropriate coefficients for the respective law. | ||
257 | * \note Instead of undefined behaviour if pc is not in the valid range, we return a valid number, | ||
258 | * by clamping the input. | ||
259 | */ | ||
260 | template<class Scalar> | ||
261 | 17061190 | static Scalar krn(Scalar swe, const Params<Scalar>& params) | |
262 | { | ||
263 | using std::pow; | ||
264 | using std::clamp; | ||
265 | |||
266 |
1/2✓ Branch 0 taken 17061190 times.
✗ Branch 1 not taken.
|
17061190 | swe = clamp(swe, 0.0, 1.0); // the equation below is only defined for 0.0 <= sw <= 1.0 |
267 | |||
268 | 17061190 | return pow(1 - swe, params.l()) * pow(1 - pow(swe, 1.0/params.m()), 2*params.m()); | |
269 | } | ||
270 | |||
271 | /*! | ||
272 | * \brief The derivative of the relative permeability for the | ||
273 | * non-wetting phase in regard to the wetting saturation of | ||
274 | * the medium as implied by the van Genuchten | ||
275 | * parameterization. | ||
276 | * | ||
277 | * \param swe The mobile saturation of the wetting phase. | ||
278 | * \param params A container object that is populated with the appropriate coefficients for the respective law. | ||
279 | * \note Instead of undefined behaviour if pc is not in the valid range, we return a valid number, | ||
280 | * by clamping the input. | ||
281 | */ | ||
282 | template<class Scalar> | ||
283 | 1123657 | static Scalar dkrn_dswe(Scalar swe, const Params<Scalar>& params) | |
284 | { | ||
285 | using std::pow; | ||
286 | using std::clamp; | ||
287 | |||
288 |
1/2✓ Branch 0 taken 1123657 times.
✗ Branch 1 not taken.
|
1123657 | swe = clamp(swe, 0.0, 1.0); // the equation below is only defined for 0.0 <= sw <= 1.0 |
289 | |||
290 | 1123657 | const auto sne = 1.0 - swe; | |
291 | 1123657 | const auto x = 1.0 - pow(swe, 1.0/params.m()); | |
292 | 1123657 | return -pow(sne, params.l()-1.0) * pow(x, 2*params.m() - 1.0) * ( params.l()*x + 2.0*sne/swe*(1.0 - x) ); | |
293 | } | ||
294 | }; | ||
295 | |||
296 | /*! | ||
297 | * \ingroup Fluidmatrixinteractions | ||
298 | * \brief A regularization for the VanGenuchten material law | ||
299 | * \note Regularization can be turned of by setting the threshold parameters | ||
300 | * out of range (runtime) or by replacing | ||
301 | * this class by NoRegularization (compile time). | ||
302 | */ | ||
303 | template <class Scalar> | ||
304 | 452 | class VanGenuchtenRegularization | |
305 | { | ||
306 | public: | ||
307 | //! Regularization parameters | ||
308 | template<class S> | ||
309 | struct Params | ||
310 | { | ||
311 | /*! | ||
312 | * \brief Set the threshold saturation below which the capillary pressure is regularized. | ||
313 | * | ||
314 | * Most problems are very sensitive to this value (e.g. making it smaller might | ||
315 | * result in very high capillary pressures) | ||
316 | */ | ||
317 | ✗ | void setPcLowSwe(Scalar pcLowSwe) | |
318 | ✗ | { pcLowSwe_ = pcLowSwe; } | |
319 | |||
320 | /*! | ||
321 | * \brief Threshold saturation below which the capillary pressure is regularized. | ||
322 | */ | ||
323 | ✗ | Scalar pcLowSwe() const | |
324 | ✗ | { return pcLowSwe_; } | |
325 | |||
326 | /*! | ||
327 | * \brief Set the threshold saturation above which the capillary pressure is regularized. | ||
328 | */ | ||
329 | ✗ | void setPcHighSwe(Scalar pcHighSwe) | |
330 | ✗ | { pcHighSwe_ = pcHighSwe; } | |
331 | |||
332 | /*! | ||
333 | * \brief Threshold saturation above which the capillary pressure is regularized. | ||
334 | * | ||
335 | * Most problems are very sensitive to this value (e.g. making it smaller might | ||
336 | * result in negative capillary pressures). | ||
337 | */ | ||
338 | ✗ | Scalar pcHighSwe() const | |
339 | ✗ | { return pcHighSwe_; } | |
340 | |||
341 | /*! | ||
342 | * \brief Set the threshold saturation below which the relative | ||
343 | * permeability of the non-wetting phase gets regularized. | ||
344 | */ | ||
345 | ✗ | void setKrnLowSwe(Scalar krnLowSwe) | |
346 | ✗ | { krnLowSwe_ = krnLowSwe; } | |
347 | |||
348 | /*! | ||
349 | * \brief Threshold saturation below which the relative | ||
350 | * permeability of the non-wetting phase gets regularized. | ||
351 | */ | ||
352 | ✗ | Scalar krnLowSwe() const | |
353 | ✗ | { return krnLowSwe_; } | |
354 | |||
355 | /*! | ||
356 | * \brief Set the threshold saturation above which the relative | ||
357 | * permeability of the wetting phase gets regularized. | ||
358 | */ | ||
359 | ✗ | void setKrwHighSwe(Scalar krwHighSwe) | |
360 | ✗ | { krwHighSwe_ = krwHighSwe; } | |
361 | |||
362 | /*! | ||
363 | * \brief Threshold saturation above which the relative | ||
364 | * permeability of the wetting phase gets regularized. | ||
365 | */ | ||
366 | ✗ | Scalar krwHighSwe() const | |
367 | ✗ | { return krwHighSwe_; } | |
368 | |||
369 | private: | ||
370 | S pcLowSwe_ = 0.01; | ||
371 | S pcHighSwe_ = 0.99; | ||
372 | S krnLowSwe_ = 0.1; | ||
373 | S krwHighSwe_ = 0.9; | ||
374 | }; | ||
375 | |||
376 | //! Initialize the spline | ||
377 | template<class MaterialLaw> | ||
378 | 112 | void init(const MaterialLaw* m, const std::string& paramGroup) | |
379 | { | ||
380 | 112 | pcLowSwe_ = getParamFromGroup<Scalar>(paramGroup, "VanGenuchtenPcLowSweThreshold", 0.01); | |
381 | 112 | pcHighSwe_ = getParamFromGroup<Scalar>(paramGroup, "VanGenuchtenPcHighSweThreshold", 0.99); | |
382 | 112 | krwHighSwe_ = getParamFromGroup<Scalar>(paramGroup, "VanGenuchtenKrwHighSweThreshold", 0.9); | |
383 | 112 | krnLowSwe_ = getParamFromGroup<Scalar>(paramGroup, "VanGenuchtenKrnLowSweThreshold", 0.1); | |
384 | |||
385 | 112 | initPcParameters_(m, pcLowSwe_, pcHighSwe_); | |
386 | 112 | initKrParameters_(m, krnLowSwe_, krwHighSwe_); | |
387 | 112 | } | |
388 | |||
389 | template<class MaterialLaw, class BaseParams, class EffToAbsParams> | ||
390 | ✗ | void init(const MaterialLaw* m, const BaseParams& bp, const EffToAbsParams& etap, const Params<Scalar>& p) | |
391 | { | ||
392 | ✗ | pcLowSwe_ = p.pcLowSwe(); | |
393 | ✗ | pcHighSwe_ = p.pcHighSwe(); | |
394 | ✗ | krwHighSwe_ = p.krwHighSwe(); | |
395 | ✗ | krnLowSwe_ = p.krnLowSwe(); | |
396 | |||
397 | ✗ | initPcParameters_(m, pcLowSwe_, pcHighSwe_); | |
398 | ✗ | initKrParameters_(m, krnLowSwe_, krwHighSwe_); | |
399 | ✗ | } | |
400 | |||
401 | /*! | ||
402 | * \brief Equality comparison with another instance | ||
403 | */ | ||
404 | 4401 | bool operator== (const VanGenuchtenRegularization& o) const | |
405 | { | ||
406 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 4401 times.
|
4401 | return Dune::FloatCmp::eq(pcLowSwe_, o.pcLowSwe_, 1e-6) |
407 |
2/4✗ Branch 0 not taken.
✓ Branch 1 taken 4401 times.
✓ Branch 2 taken 4401 times.
✗ Branch 3 not taken.
|
4401 | && Dune::FloatCmp::eq(pcHighSwe_, o.pcHighSwe_, 1e-6) |
408 |
2/4✗ Branch 0 not taken.
✓ Branch 1 taken 4401 times.
✓ Branch 2 taken 4401 times.
✗ Branch 3 not taken.
|
4401 | && Dune::FloatCmp::eq(krwHighSwe_, o.krwHighSwe_, 1e-6) |
409 |
3/6✓ Branch 0 taken 4401 times.
✗ Branch 1 not taken.
✗ Branch 2 not taken.
✓ Branch 3 taken 4401 times.
✗ Branch 4 not taken.
✓ Branch 5 taken 4401 times.
|
8802 | && Dune::FloatCmp::eq(krnLowSwe_, o.krnLowSwe_, 1e-6); |
410 | } | ||
411 | |||
412 | /*! | ||
413 | * \brief The regularized capillary pressure-saturation curve | ||
414 | * regularized part: | ||
415 | * - low saturation: extend the \f$\mathrm{p_c(S_w)}\f$ curve with the slope at the regularization point (i.e. no kink). | ||
416 | * - high saturation: connect the high regularization point with \f$\mathrm{\overline{S}_w =1}\f$ | ||
417 | * with a spline and continue linearly for \f$\mathrm{\overline{S}_w > 1}\f$ | ||
418 | */ | ||
419 | 35786745 | OptionalScalar<Scalar> pc(const Scalar swe) const | |
420 | { | ||
421 | // make sure that the capillary pressure observes a derivative | ||
422 | // != 0 for 'illegal' saturations. This is favourable for the | ||
423 | // newton solver (if the derivative is calculated numerically) | ||
424 | // in order to get the saturation moving to the right | ||
425 | // direction if it temporarily is in an 'illegal' range. | ||
426 |
2/2✓ Branch 0 taken 1009086 times.
✓ Branch 1 taken 34777659 times.
|
35786745 | if (swe <= pcLowSwe_) |
427 | 1009086 | return pcLowSwePcValue_ + pcDerivativeLowSw_*(swe - pcLowSwe_); | |
428 | |||
429 |
2/2✓ Branch 0 taken 18260607 times.
✓ Branch 1 taken 16517052 times.
|
34777659 | else if (swe >= 1.0) |
430 | 18260607 | return pcDerivativeHighSweEnd_*(swe - 1.0); | |
431 | |||
432 |
2/2✓ Branch 0 taken 6894132 times.
✓ Branch 1 taken 9622920 times.
|
16517052 | else if (swe > pcHighSwe_) |
433 | 6894132 | return pcSpline_.eval(swe); | |
434 | |||
435 | else | ||
436 | 9622920 | return {}; // no regularization | |
437 | } | ||
438 | |||
439 | /*! | ||
440 | * \brief The regularized partial derivative of the capillary pressure w.r.t. the saturation | ||
441 | */ | ||
442 | 1743816 | OptionalScalar<Scalar> dpc_dswe(const Scalar swe) const | |
443 | { | ||
444 |
2/2✓ Branch 0 taken 22 times.
✓ Branch 1 taken 1743794 times.
|
1743816 | if (swe <= pcLowSwe_) |
445 | 22 | return pcDerivativeLowSw_; | |
446 | |||
447 |
2/2✓ Branch 0 taken 1566190 times.
✓ Branch 1 taken 177604 times.
|
1743794 | else if (swe >= 1.0) |
448 | 1566190 | return pcDerivativeHighSweEnd_; | |
449 | |||
450 |
2/2✓ Branch 0 taken 85488 times.
✓ Branch 1 taken 92116 times.
|
177604 | else if (swe > pcHighSwe_) |
451 | 85488 | return pcSpline_.evalDerivative(swe); | |
452 | |||
453 | else | ||
454 | 92116 | return {}; // no regularization | |
455 | } | ||
456 | |||
457 | /*! | ||
458 | * \brief The regularized saturation-capillary pressure curve | ||
459 | */ | ||
460 | 797133624 | OptionalScalar<Scalar> swe(const Scalar pc) const | |
461 | { | ||
462 |
2/2✓ Branch 0 taken 19760766 times.
✓ Branch 1 taken 777372858 times.
|
797133624 | if (pc <= 0.0) |
463 | { | ||
464 |
2/2✓ Branch 0 taken 19120175 times.
✓ Branch 1 taken 640591 times.
|
19760766 | if (pcHighSwe_ >= 1.0) |
465 | 19120175 | return 1.0; | |
466 | else | ||
467 | 640591 | return pc/pcDerivativeHighSweEnd_ + 1.0; | |
468 | } | ||
469 | |||
470 | // invert spline | ||
471 |
2/2✓ Branch 0 taken 55773 times.
✓ Branch 1 taken 777317085 times.
|
777372858 | else if (pc <= pcHighSwePcValue_) |
472 | 55773 | return pcSpline_.intersectInterval(pcHighSwe_, 1.0, 0.0, 0.0, 0.0, pc); | |
473 | |||
474 |
2/2✓ Branch 0 taken 3348197 times.
✓ Branch 1 taken 773968888 times.
|
777317085 | else if (pc >= pcLowSwePcValue_) |
475 | 3348197 | return (pc - pcLowSwePcValue_)/pcDerivativeLowSw_ + pcLowSwe_; | |
476 | |||
477 | else | ||
478 | 773968888 | return {}; // no regularization | |
479 | } | ||
480 | |||
481 | /*! | ||
482 | * \brief The regularized partial derivative of the saturation to the capillary pressure | ||
483 | */ | ||
484 | 41607302 | OptionalScalar<Scalar> dswe_dpc(const Scalar pc) const | |
485 | { | ||
486 |
2/2✓ Branch 0 taken 3752283 times.
✓ Branch 1 taken 37855019 times.
|
41607302 | if (pc <= 0.0) |
487 | { | ||
488 |
2/2✓ Branch 0 taken 3752263 times.
✓ Branch 1 taken 20 times.
|
3752283 | if (pcHighSwe_ >= 1.0) |
489 | 3752263 | return 0.0; | |
490 | else | ||
491 | 20 | return 1.0/pcDerivativeHighSweEnd_; | |
492 | } | ||
493 | |||
494 | // derivative of the inverse of the function is one over derivative of the function | ||
495 |
2/2✓ Branch 0 taken 2 times.
✓ Branch 1 taken 37855017 times.
|
37855019 | else if (pc <= pcHighSwePcValue_) |
496 | 2 | return 1.0/pcSpline_.evalDerivative(pcSpline_.intersectInterval(pcHighSwe_, 1.0, 0.0, 0.0, 0.0, pc)); | |
497 | |||
498 |
2/2✓ Branch 0 taken 494606 times.
✓ Branch 1 taken 37360411 times.
|
37855017 | else if (pc >= pcLowSwePcValue_) |
499 | 494606 | return 1.0/pcDerivativeLowSw_; | |
500 | |||
501 | else | ||
502 | 37360411 | return {}; // no regularization | |
503 | } | ||
504 | |||
505 | /*! | ||
506 | * \brief The regularized relative permeability for the wetting phase | ||
507 | */ | ||
508 | 830175875 | OptionalScalar<Scalar> krw(const Scalar swe) const | |
509 | { | ||
510 |
2/2✓ Branch 0 taken 2870329 times.
✓ Branch 1 taken 827305546 times.
|
830175875 | if (swe <= 0.0) |
511 | 2870329 | return 0.0; | |
512 |
2/2✓ Branch 0 taken 36827962 times.
✓ Branch 1 taken 790477584 times.
|
827305546 | else if (swe >= 1.0) |
513 | 36827962 | return 1.0; | |
514 |
2/2✓ Branch 0 taken 10573759 times.
✓ Branch 1 taken 779903825 times.
|
790477584 | else if (swe >= krwHighSwe_) |
515 | 10573759 | return krwSpline_.eval(swe); | |
516 | else | ||
517 | 779903825 | return {}; // no regularization | |
518 | } | ||
519 | |||
520 | /*! | ||
521 | * \brief The regularized derivative of the relative permeability for the wetting phase w.r.t. saturation | ||
522 | */ | ||
523 | 34307830 | OptionalScalar<Scalar> dkrw_dswe(const Scalar swe) const | |
524 | { | ||
525 |
2/2✓ Branch 0 taken 375168 times.
✓ Branch 1 taken 33932662 times.
|
34307830 | if (swe <= 0.0) |
526 | 375168 | return 0.0; | |
527 |
2/2✓ Branch 0 taken 4057722 times.
✓ Branch 1 taken 29874940 times.
|
33932662 | else if (swe >= 1.0) |
528 | 4057722 | return 0.0; | |
529 |
2/2✓ Branch 0 taken 1307408 times.
✓ Branch 1 taken 28567532 times.
|
29874940 | else if (swe >= krwHighSwe_) |
530 | 1307408 | return krwSpline_.evalDerivative(swe); | |
531 | else | ||
532 | 28567532 | return {}; // no regularization | |
533 | } | ||
534 | |||
535 | /*! | ||
536 | * \brief The regularized relative permeability for the non-wetting phase | ||
537 | */ | ||
538 | 33668978 | OptionalScalar<Scalar> krn(const Scalar swe) const | |
539 | { | ||
540 |
2/2✓ Branch 0 taken 500995 times.
✓ Branch 1 taken 33167983 times.
|
33668978 | if (swe <= 0.0) |
541 | 500995 | return 1.0; | |
542 |
2/2✓ Branch 0 taken 17168911 times.
✓ Branch 1 taken 15999072 times.
|
33167983 | else if (swe >= 1.0) |
543 | 17168911 | return 0.0; | |
544 |
2/2✓ Branch 0 taken 307609 times.
✓ Branch 1 taken 15691463 times.
|
15999072 | else if (swe <= krnLowSwe_) |
545 | 307609 | return krnSpline_.eval(swe); | |
546 | else | ||
547 | 15691463 | return {}; // no regularization | |
548 | } | ||
549 | |||
550 | /*! | ||
551 | * \brief The regularized derivative of the relative permeability for the non-wetting phase w.r.t. saturation | ||
552 | */ | ||
553 | 1190756 | OptionalScalar<Scalar> dkrn_dswe(const Scalar swe) const | |
554 | { | ||
555 |
2/2✓ Branch 0 taken 10 times.
✓ Branch 1 taken 1190746 times.
|
1190756 | if (swe <= 0.0) |
556 | 10 | return 0.0; | |
557 |
2/2✓ Branch 0 taken 1067196 times.
✓ Branch 1 taken 123550 times.
|
1190746 | else if (swe >= 1.0) |
558 | 1067196 | return 0.0; | |
559 |
2/2✓ Branch 0 taken 8 times.
✓ Branch 1 taken 123542 times.
|
123550 | else if (swe <= krnLowSwe_) |
560 | 8 | return krnSpline_.evalDerivative(swe); | |
561 | else | ||
562 | 123542 | return {}; // no regularization | |
563 | } | ||
564 | |||
565 | private: | ||
566 | template<class MaterialLaw> | ||
567 | 113 | void initPcParameters_(const MaterialLaw* m, const Scalar lowSwe, const Scalar highSwe) | |
568 | { | ||
569 | 226 | const auto lowSw = MaterialLaw::EffToAbs::sweToSw(lowSwe, m->effToAbsParams()); | |
570 | 226 | const auto highSw = MaterialLaw::EffToAbs::sweToSw(highSwe, m->effToAbsParams()); | |
571 | 226 | const auto dsw_dswe = MaterialLaw::EffToAbs::dsw_dswe(m->effToAbsParams()); | |
572 | |||
573 | 113 | pcDerivativeLowSw_ = m->template dpc_dsw<false>(lowSw)*dsw_dswe; | |
574 | |||
575 | 113 | pcDerivativeHighSweThreshold_ = m->template dpc_dsw<false>(highSw)*dsw_dswe; | |
576 | 113 | pcDerivativeHighSweEnd_ = 2.0*(0.0 - m->template pc<false>(highSw))/(1.0 - highSwe); | |
577 | |||
578 | 113 | pcLowSwePcValue_ = m->template pc<false>(lowSw); | |
579 | 113 | pcHighSwePcValue_ = m->template pc<false>(highSw); | |
580 | |||
581 | // Only initialize regularization spline if given parameters are in | ||
582 | // the admissible range. When constructing with non-sensible parameters | ||
583 | // the spline construction might fail (e.g. highSwe == 1.0) | ||
584 |
2/2✓ Branch 0 taken 101 times.
✓ Branch 1 taken 12 times.
|
113 | if (highSwe < 1.0) |
585 | 101 | pcSpline_ = Spline<Scalar>(highSwe, 1.0, // x0, x1 | |
586 | pcHighSwePcValue_, 0, // y0, y1 | ||
587 | pcDerivativeHighSweThreshold_, pcDerivativeHighSweEnd_); // m0, m1 | ||
588 | 113 | } | |
589 | |||
590 | template<class MaterialLaw> | ||
591 | 113 | void initKrParameters_(const MaterialLaw* m, const Scalar lowSwe, const Scalar highSwe) | |
592 | { | ||
593 | 226 | const auto lowSw = MaterialLaw::EffToAbs::sweToSw(lowSwe, m->effToAbsParams()); | |
594 | 226 | const auto highSw = MaterialLaw::EffToAbs::sweToSw(highSwe, m->effToAbsParams()); | |
595 | 226 | const auto dsw_dswe = MaterialLaw::EffToAbs::dsw_dswe(m->effToAbsParams()); | |
596 | |||
597 | 113 | const auto krwHighSw = m->template krw<false>(highSw); | |
598 | 113 | const auto dkrwHighSw = m->template dkrw_dsw<false>(highSw)*dsw_dswe; | |
599 | |||
600 | 113 | const auto krnLowSw = m->template krn<false>(lowSw); | |
601 | 113 | const auto dkrnLowSw = m->template dkrn_dsw<false>(lowSw)*dsw_dswe; | |
602 | |||
603 |
2/2✓ Branch 0 taken 106 times.
✓ Branch 1 taken 7 times.
|
113 | if (highSwe < 1.0) |
604 | 106 | krwSpline_ = Spline<Scalar>(highSwe, 1.0, // x0, x1 | |
605 | krwHighSw, 1.0, // y0, y1 | ||
606 | dkrwHighSw, 0.0); // m0, m1 | ||
607 | |||
608 |
2/2✓ Branch 0 taken 112 times.
✓ Branch 1 taken 1 times.
|
113 | if (lowSwe > 0.0) |
609 | 112 | krnSpline_ = Spline<Scalar>(0.0, lowSwe, // x0, x1 | |
610 | 1.0, krnLowSw, // y0, y1 | ||
611 | 0.0, dkrnLowSw); // m0, m1 | ||
612 | 113 | } | |
613 | |||
614 | Scalar pcLowSwe_, pcHighSwe_; | ||
615 | Scalar pcLowSwePcValue_, pcHighSwePcValue_; | ||
616 | Scalar krwHighSwe_, krnLowSwe_; | ||
617 | Scalar pcDerivativeLowSw_; | ||
618 | Scalar pcDerivativeHighSweThreshold_, pcDerivativeHighSweEnd_; | ||
619 | |||
620 | Spline<Scalar> pcSpline_; | ||
621 | Spline<Scalar> krwSpline_; | ||
622 | Spline<Scalar> krnSpline_; | ||
623 | }; | ||
624 | |||
625 | /*! | ||
626 | * \ingroup Fluidmatrixinteractions | ||
627 | * \brief A default configuration for using the VanGenuchten material law | ||
628 | */ | ||
629 | template<typename Scalar = double> | ||
630 | using VanGenuchtenDefault = TwoPMaterialLaw<Scalar, VanGenuchten, VanGenuchtenRegularization<Scalar>, TwoPEffToAbsDefaultPolicy>; | ||
631 | |||
632 | /*! | ||
633 | * \ingroup Fluidmatrixinteractions | ||
634 | * \brief A default configuration without regularization for using the VanGenuchten material law | ||
635 | */ | ||
636 | template<typename Scalar = double> | ||
637 | using VanGenuchtenNoReg = TwoPMaterialLaw<Scalar, VanGenuchten, NoRegularization, TwoPEffToAbsDefaultPolicy>; | ||
638 | |||
639 | } // end namespace Dumux::FluidMatrix | ||
640 | |||
641 | #endif | ||
642 |