Example: model comparison ************************* This example shows the multi-model comparison. You will see how to perform a multi-model comparison Provided are three models, a linear models with 2 input parameters, a nonlinear model with 2 input parameters and a nonlinear model with 4 input parameters. The data to base the comparison on is given in an extra file. .. note:: A detailed explanation of this example will be provided in future as part of the tutorial. Model 1: L2_model ================= .. list-table:: Pylink model1 :widths: 30 30 :header-rows: 1 * - Property - Setting * - Model type - Function (linear) * - Number of input parameters - 2 * - Number of output parameters - 1 * - Time- or space- dependency - space-dependency * - MC reference - No .. list-table:: Priors1 :widths: 30 30 :header-rows: 1 * - Parameter - Distribution * - 0-2 - given as correlated samples Model 1: NL2_model ================== .. list-table:: Pylink model1 :widths: 30 30 :header-rows: 1 * - Property - Setting * - Model type - Function (exponential) * - Number of input parameters - 2 * - Number of output parameters - 1 * - Time- or space- dependency - space-dependency * - MC reference - No .. list-table:: Priors1 :widths: 30 30 :header-rows: 1 * - Parameter - Distribution * - 0-2 - given as correlated samples Model 1: NL4_model ================== .. list-table:: Pylink model1 :widths: 30 30 :header-rows: 1 * - Property - Setting * - Model type - Function (cosine) * - Number of input parameters - 4 * - Number of output parameters - 1 * - Time- or space- dependency - space-dependency * - MC reference - No .. list-table:: Priors1 :widths: 30 30 :header-rows: 1 * - Parameter - Distribution * - 0-4 - given as correlated samples Surrogates 1-3 ============== All surrogates share the same setup and only differ in the given model. .. list-table:: MetaModel settings :widths: 30 30 :header-rows: 1 * - Property - Setting * - surrogate-type - aPCE * - associated model - see lists above * - degree choices - 1-12, q-norm truncation 1.0 * - regression - OMP (Orthogonal matching pursuit) .. list-table:: Training choices :widths: 30 30 :header-rows: 1 * - Property - Setting * - Static sampling method - latin-hypercube * - Number of static samples - 100 * - Number of total samples - 100