Contents Menu Expand Light mode Dark mode Auto light/dark, in light mode Auto light/dark, in dark mode Skip to content
bayesvalidrox 2.0.0 documentation
Logo
  • USER GUIDE
    • Priors, input space and experimental design
    • Models
    • Training surrogate models
    • Active learning: iteratively expanding the training set
    • Postprocessing
    • Bayesian inference
    • Bayesian multi-model comparison
  • TUTORIAL
  • EXAMPLES
    • Analytical function
    • Beam
    • Borehole
    • Ishigami
    • Model comparison
    • OHagan-function
    • Pollution
  • API
    • bayesvalidrox
      • bayesvalidrox.bayes_inference
        • bayesvalidrox.bayes_inference.bayes_inference
          • bayesvalidrox.bayes_inference.bayes_inference.BayesInference
        • bayesvalidrox.bayes_inference.bayes_model_comparison
          • bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison
        • bayesvalidrox.bayes_inference.discrepancy
          • bayesvalidrox.bayes_inference.discrepancy.Discrepancy
        • bayesvalidrox.bayes_inference.mcmc
          • bayesvalidrox.bayes_inference.mcmc.MCMC
        • bayesvalidrox.bayes_inference.post_sampler
          • bayesvalidrox.bayes_inference.post_sampler.PostSampler
        • bayesvalidrox.bayes_inference.rejection_sampler
          • bayesvalidrox.bayes_inference.rejection_sampler.RejectionSampler
      • bayesvalidrox.post_processing
        • bayesvalidrox.post_processing.post_processing
          • bayesvalidrox.post_processing.post_processing.PostProcessing
      • bayesvalidrox.pylink
        • bayesvalidrox.pylink.pylink
          • bayesvalidrox.pylink.pylink.within_range
          • bayesvalidrox.pylink.pylink.PyLinkForwardModel
      • bayesvalidrox.surrogate_models
        • bayesvalidrox.surrogate_models.apoly_construction
          • bayesvalidrox.surrogate_models.apoly_construction.apoly_construction
        • bayesvalidrox.surrogate_models.bayes_linear
          • bayesvalidrox.surrogate_models.bayes_linear.gamma_mean
          • bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression
          • bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression
          • bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression
        • bayesvalidrox.surrogate_models.engine
          • bayesvalidrox.surrogate_models.engine.Engine
        • bayesvalidrox.surrogate_models.eval_rec_rule
          • bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule
          • bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary
          • bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis
          • bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs
        • bayesvalidrox.surrogate_models.exp_designs
          • bayesvalidrox.surrogate_models.exp_designs.ExpDesigns
        • bayesvalidrox.surrogate_models.exploration
          • bayesvalidrox.surrogate_models.exploration.Exploration
        • bayesvalidrox.surrogate_models.gaussian_process_sklearn
          • bayesvalidrox.surrogate_models.gaussian_process_sklearn.GPESkl
          • bayesvalidrox.surrogate_models.gaussian_process_sklearn.MySklGPE
        • bayesvalidrox.surrogate_models.glexindex
          • bayesvalidrox.surrogate_models.glexindex.cross_truncate
          • bayesvalidrox.surrogate_models.glexindex.glexindex
        • bayesvalidrox.surrogate_models.input_space
          • bayesvalidrox.surrogate_models.input_space.InputSpace
        • bayesvalidrox.surrogate_models.inputs
          • bayesvalidrox.surrogate_models.inputs.Input
          • bayesvalidrox.surrogate_models.inputs.Marginal
        • bayesvalidrox.surrogate_models.meta_model
          • bayesvalidrox.surrogate_models.meta_model.transform_y
          • bayesvalidrox.surrogate_models.meta_model.MetaModel
        • bayesvalidrox.surrogate_models.orthogonal_matching_pursuit
          • bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr
          • bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit
        • bayesvalidrox.surrogate_models.pce_gpr
          • bayesvalidrox.surrogate_models.pce_gpr.PCEGPR
        • bayesvalidrox.surrogate_models.polynomial_chaos
          • bayesvalidrox.surrogate_models.polynomial_chaos.PCE
        • bayesvalidrox.surrogate_models.reg_fast_ard
          • bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions
          • bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD
        • bayesvalidrox.surrogate_models.reg_fast_laplace
          • bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace
        • bayesvalidrox.surrogate_models.sequential_design
          • bayesvalidrox.surrogate_models.sequential_design.SequentialDesign
        • bayesvalidrox.surrogate_models.supplementary
          • bayesvalidrox.surrogate_models.supplementary.check_ranges
          • bayesvalidrox.surrogate_models.supplementary.corr_loocv_error
          • bayesvalidrox.surrogate_models.supplementary.create_psi
          • bayesvalidrox.surrogate_models.supplementary.gelman_rubin
          • bayesvalidrox.surrogate_models.supplementary.hellinger_distance
          • bayesvalidrox.surrogate_models.supplementary.kernel_rbf
          • bayesvalidrox.surrogate_models.supplementary.root_mean_squared_error
          • bayesvalidrox.surrogate_models.supplementary.subdomain
Back to top
View this page

bayesvalidrox.pylink.pylink.within_range¶

bayesvalidrox.pylink.pylink.within_range(out, minout, maxout)¶

Checks if all the values in out lie between minout and maxout

Parameters¶

outarray or list

Data to check against range

minoutint

Lower bound of the range

maxoutint

Upper bound of the range

Returns¶

insidebool

True if all values in out are in the specified range

Next
bayesvalidrox.pylink.pylink.PyLinkForwardModel
Previous
bayesvalidrox.pylink.pylink
Copyright © 2023, Farid Mohammadi, Rebecca Kohlhaas
Made with Sphinx and @pradyunsg's Furo
On this page
  • bayesvalidrox.pylink.pylink.within_range
    • within_range()