bayesvalidrox.surrogate_models.inputs.Input

class bayesvalidrox.surrogate_models.inputs.Input

Bases: object

A class to define the uncertain input parameters.

Attributes

Marginalsobj

Marginal objects. See inputs.Marginal.

Rosenblattbool

If Rossenblatt transformation is required for the dependent input parameters.

Examples

Marginals can be defined as following:

>>> inputs = Inputs()
>>> inputs.add_marginals()
>>> inputs.marginals[0].name = 'X_1'
>>> inputs.marginals[0].dist_type = 'uniform'
>>> inputs.marginals[0].parameters = [-5, 5]

If there is no common data is avaliable, the input data can be given as following:

>>> inputs.add_marginals()
>>> inputs.marginals[0].name = 'X_1'
>>> inputs.marginals[0].input_data = [0,0,1,0]
__init__()

Methods

__init__()

add_marginals([name, dist_type, parameters, ...])

Adds a new Marginal object to the input object.

Attributes

poly_coeffs_flag

add_marginals(name='$x_1$', dist_type=None, parameters=None, input_data=None)

Adds a new Marginal object to the input object.

Parameters

namestring, optional

Name of the parameter. The default is ‘$x_1$’

dist_typestring, optional

Type of distribution of the marginal. This parameter has to be given in combination with parameters. The default is None.

parameterslist, optional

List of parameters of distribution of type dist_type. The default is None.

input_data : np.array, optional

Returns

None.