bayesvalidrox.surrogate_models.inputs.Input¶
- class bayesvalidrox.surrogate_models.inputs.Input¶
Bases:
object
A class to define the uncertain input parameters.
Attributes¶
- Marginalsobj
Marginal objects. See inputs.Marginal.
- Rosenblattbool
If Rossenblatt transformation is required for the dependent input parameters.
Examples¶
Marginals can be defined as following:
>>> inputs = Inputs() >>> inputs.add_marginals() >>> inputs.marginals[0].name = 'X_1' >>> inputs.marginals[0].dist_type = 'uniform' >>> inputs.marginals[0].parameters = [-5, 5]
If there is no common data is avaliable, the input data can be given as following:
>>> inputs.add_marginals() >>> inputs.marginals[0].name = 'X_1' >>> inputs.marginals[0].input_data = [0,0,1,0]
- __init__()¶
Methods
__init__
()add_marginals
([name, dist_type, parameters, ...])Adds a new Marginal object to the input object.
Attributes
poly_coeffs_flag
- add_marginals(name='$x_1$', dist_type=None, parameters=None, input_data=None)¶
Adds a new Marginal object to the input object.
Parameters¶
- namestring, optional
Name of the parameter. The default is ‘$x_1$’
- dist_typestring, optional
Type of distribution of the marginal. This parameter has to be given in combination with parameters. The default is None.
- parameterslist, optional
List of parameters of distribution of type dist_type. The default is None.
input_data : np.array, optional
Returns¶
None.