bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression

class bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression(n_iter, tol, fit_intercept, copy_x, verbose)

Bases: RegressorMixin, LinearModel

Superclass for Empirical Bayes and Variational Bayes implementations of Bayesian Linear Regression Model

__init__(n_iter, tol, fit_intercept, copy_x, verbose)

Methods

__init__(n_iter, tol, fit_intercept, copy_x, ...)

fit(X, y)

Fit model.

get_metadata_routing()

Get metadata routing of this object.

get_params([deep])

Get parameters for this estimator.

predict(X)

Predict using the linear model.

predict_dist(X)

Calculates mean and variance of predictive distribution for each data point of test set.(Note predictive distribution for each data point is Gaussian, therefore it is uniquely determined by mean and variance)

score(X, y[, sample_weight])

Return the coefficient of determination of the prediction.

set_params(**params)

Set the parameters of this estimator.

set_score_request(*[, sample_weight])

Request metadata passed to the score method.

abstract fit(X, y)

Fit model.

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routingMetadataRequest

A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

Parameters

deepbool, default=True

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns

paramsdict

Parameter names mapped to their values.

predict(X)

Predict using the linear model.

Parameters

Xarray-like or sparse matrix, shape (n_samples, n_features)

Samples.

Returns

Carray, shape (n_samples,)

Returns predicted values.

predict_dist(X)

Calculates mean and variance of predictive distribution for each data point of test set.(Note predictive distribution for each data point is Gaussian, therefore it is uniquely determined by mean and variance)

Parameters

x: array-like of size (n_test_samples, n_features)

Set of features for which corresponding responses should be predicted

Returns

:list of two numpy arrays [mu_pred, var_pred]

mu_prednumpy array of size (n_test_samples,)

Mean of predictive distribution

var_pred: numpy array of size (n_test_samples,)

Variance of predictive distribution

score(X, y, sample_weight=None)

Return the coefficient of determination of the prediction.

The coefficient of determination \(R^2\) is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares ((y_true - y_pred)** 2).sum() and \(v\) is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a \(R^2\) score of 0.0.

Parameters

Xarray-like of shape (n_samples, n_features)

Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape (n_samples, n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for the estimator.

yarray-like of shape (n_samples,) or (n_samples, n_outputs)

True values for X.

sample_weightarray-like of shape (n_samples,), default=None

Sample weights.

Returns

scorefloat

\(R^2\) of self.predict(X) w.r.t. y.

Notes

The \(R^2\) score used when calling score on a regressor uses multioutput='uniform_average' from version 0.23 to keep consistent with default value of r2_score(). This influences the score method of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters

**paramsdict

Estimator parameters.

Returns

selfestimator instance

Estimator instance.

set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') BayesianLinearRegression

Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to score.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

Added in version 1.3.

Note

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a Pipeline. Otherwise it has no effect.

Parameters

sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in score.

Returns

selfobject

The updated object.