bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit¶
- class bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit(fit_intercept=True, normalize=False, copy_x=True, verbose=False)¶
Bases:
LinearModel
,RegressorMixin
Regression with Orthogonal Matching Pursuit [1].
Parameters¶
- fit_interceptboolean, optional (DEFAULT = True)
whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered).
- copy_xboolean, optional (DEFAULT = True)
If True, X will be copied; else, it may be overwritten.
- verboseboolean, optional (DEFAULT = FALSE)
Verbose mode when fitting the model
Attributes¶
References¶
- [1] Pati, Y., Rezaiifar, R., Krishnaprasad, P. (1993). Orthogonal matching
pursuit: recursive function approximation with application to wavelet decomposition. Proceedings of 27th Asilomar Conference on Signals, Systems and Computers, 40-44.
- __init__(fit_intercept=True, normalize=False, copy_x=True, verbose=False)¶
Methods
__init__
([fit_intercept, normalize, copy_x, ...])blockwise_inverse
(a_inv, b, c, d)Non-singular square matrix M defined as M = [[A B]; [C D]] .
fit
(X, y)Fits Regression with Orthogonal Matching Pursuit Algorithm.
Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
loo_error
(psi, inv_inf_matrix, y, coeffs)Calculates the corrected LOO error for regression on regressor matrix psi that generated the coefficients based on [1] and [2].
predict
(X)Computes predictive distribution for test set.
score
(X, y[, sample_weight])Return the coefficient of determination of the prediction.
set_params
(**params)Set the parameters of this estimator.
set_score_request
(*[, sample_weight])Request metadata passed to the
score
method.- blockwise_inverse(a_inv, b, c, d)¶
Non-singular square matrix M defined as M = [[A B]; [C D]] . B, C and D can have any dimension, provided their combination defines a square matrix M.
Parameters¶
- a_invfloat or array
inverse of the square-submatrix A.
- bfloat or array
Information matrix with all new regressor.
- cfloat or array
Transpose of B.
- dfloat or array
Information matrix with all selected regressors.
Returns¶
- Marray
Inverse of the information matrix.
- fit(X, y)¶
Fits Regression with Orthogonal Matching Pursuit Algorithm.
Parameters¶
- X: {array-like, sparse matrix} of size (n_samples, n_features)
Training data, matrix of explanatory variables
- y: array-like of size [n_samples, n_features]
Target values
Returns¶
- selfobject
Returns self.
- get_metadata_routing()¶
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
Returns¶
- routingMetadataRequest
A
MetadataRequest
encapsulating routing information.
- get_params(deep=True)¶
Get parameters for this estimator.
Parameters¶
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns¶
- paramsdict
Parameter names mapped to their values.
- loo_error(psi, inv_inf_matrix, y, coeffs)¶
Calculates the corrected LOO error for regression on regressor matrix psi that generated the coefficients based on [1] and [2].
- [1] Blatman, G., 2009. Adaptive sparse polynomial chaos expansions for
uncertainty propagation and sensitivity analysis (Doctoral dissertation, Clermont-Ferrand 2).
- [2] Blatman, G. and Sudret, B., 2011. Adaptive sparse polynomial chaos
expansion based on least angle regression. Journal of computational Physics, 230(6), pp.2345-2367.
Parameters¶
- psiarray of shape (n_samples, n_feature)
Orthogonal bases evaluated at the samples.
- inv_inf_matrixarray
Inverse of the information matrix.
- yarray of shape (n_samples, )
Targets.
- coeffsarray
Computed regresssor cofficients.
Returns¶
- loo_errorfloat
Modified LOOCV error.
- predict(X)¶
Computes predictive distribution for test set.
Parameters¶
- X: {array-like, sparse} (n_samples_test, n_features)
Test data, matrix of explanatory variables
Returns¶
- y_hat: numpy array of size (n_samples_test,)
Estimated values of targets on test set (i.e. mean of predictive distribution)
- score(X, y, sample_weight=None)¶
Return the coefficient of determination of the prediction.
The coefficient of determination \(R^2\) is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares
((y_true - y_pred)** 2).sum()
and \(v\) is the total sum of squares((y_true - y_true.mean()) ** 2).sum()
. The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a \(R^2\) score of 0.0.Parameters¶
- Xarray-like of shape (n_samples, n_features)
Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape
(n_samples, n_samples_fitted)
, wheren_samples_fitted
is the number of samples used in the fitting for the estimator.- yarray-like of shape (n_samples,) or (n_samples, n_outputs)
True values for X.
- sample_weightarray-like of shape (n_samples,), default=None
Sample weights.
Returns¶
- scorefloat
\(R^2\) of
self.predict(X)
w.r.t. y.
Notes¶
The \(R^2\) score used when calling
score
on a regressor usesmultioutput='uniform_average'
from version 0.23 to keep consistent with default value ofr2_score()
. This influences thescore
method of all the multioutput regressors (except forMultiOutputRegressor
).
- set_params(**params)¶
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.Parameters¶
- **paramsdict
Estimator parameters.
Returns¶
- selfestimator instance
Estimator instance.
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') OrthogonalMatchingPursuit ¶
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.Parameters¶
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_weight
parameter inscore
.
Returns¶
- selfobject
The updated object.