bayesvalidrox.surrogate_models.exploration.Exploration¶
- class bayesvalidrox.surrogate_models.exploration.Exploration(ExpDesign, n_candidate, mc_criterion='mc-intersite-proj-th')¶
Bases:
object
Created based on the Surrogate Modeling Toolbox (SUMO) [1].
- [1] Gorissen, D., Couckuyt, I., Demeester, P., Dhaene, T. and Crombecq, K.,
2010. A surrogate modeling and adaptive sampling toolbox for computer based design. Journal of machine learning research.-Cambridge, Mass., 11, pp.2051-2055. sumo@sumo.intec.ugent.be - http://sumo.intec.ugent.be
Attributes¶
- ExpDesignobj
ExpDesign object.
- n_candidateint
Number of candidate samples.
- mc_criterionstr
Selection crieterion. The default is ‘mc-intersite-proj-th’. Another option is ‘mc-intersite-proj’.
- wint
Number of random points in the domain for each sample of the training set.
- __init__(ExpDesign, n_candidate, mc_criterion='mc-intersite-proj-th')¶
Methods
__init__
(ExpDesign, n_candidate[, mc_criterion])approximate_voronoi
(w, samples)An approximate (monte carlo) version of Matlab's voronoi command.
This function generates candidates to be selected as new design and their associated exploration scores.
get_mc_samples
([all_candidates])This function generates random samples based on Global Monte Carlo methods and their corresponding scores, based on [1].
This function generates samples based on voronoi cells and their corresponding scores
- approximate_voronoi(w, samples)¶
An approximate (monte carlo) version of Matlab’s voronoi command.
Arguments¶
- samplesarray
Old experimental design to be used as center points for voronoi cells.
Returns¶
- areasarray
An approximation of the voronoi cells’ areas.
- all_candidates: list of arrays
A list of samples in each voronoi cell.
- get_exploration_samples()¶
This function generates candidates to be selected as new design and their associated exploration scores.
Returns¶
- all_candidatesarray of shape (n_candidate, n_params)
A list of samples.
- exploration_scores: arrays of shape (n_candidate)
Exploration scores.
- get_mc_samples(all_candidates=None)¶
This function generates random samples based on Global Monte Carlo methods and their corresponding scores, based on [1].
- [1] Crombecq, K., Laermans, E. and Dhaene, T., 2011. Efficient
space-filling and non-collapsing sequential design strategies for simulation-based modeling. European Journal of Operational Research , 214(3), pp.683-696. DOI: https://doi.org/10.1016/j.ejor.2011.05.032
- Implemented methods to compute scores:
mc-intersite-proj
mc-intersite-proj-th
Arguments¶
- all_candidatesarray, optional
Samples to compute the scores for. The default is None. In this case, samples will be generated by defined model input marginals.
Returns¶
- new_samplesarray of shape (n_candidate, n_params)
A list of samples.
- exploration_scores: arrays of shape (n_candidate)
Exploration scores.